水平井体积压裂高速冲蚀套管内井下行为特征研究

Downhole Behavior Characteristics of Horizontal Well Volume Fracturing in High-Speed Erosion Casing

  • 摘要: 为给水平井体积压裂设计优化、降低压裂工具下入阻卡风险提供理论依据,采用自主研发的大型孔眼冲蚀现场试验模拟系统,进行了高速携砂液冲蚀套管及压裂材料的试验,基于试验结果建立了动态描述孔眼内壁冲蚀形态的模型。试验结果表明,携砂液加砂浓度增大,冲蚀后孔眼内壁最大直径与泵送压降幅度逐渐增大;套管内壁支撑剂附着层厚度从井筒跟端至趾端呈逐渐增大的趋势,可使下级套管内径缩小35 mm,随着加砂浓度逐渐增大,套管跟端附着量逐渐增加,但趾端附着量逐渐减小;随着携砂液加砂浓度增大,冲蚀后支撑剂的破碎程度逐渐增大,碎屑占比提高,冲蚀后压裂液黏度降低幅度先升高后降低,压裂液黏度最大降幅可达52%。建立了高速冲蚀套管内支撑剂运移数值模型,分析了套管内支撑剂颗粒运移的规律,验证了通过试验得出的动态描述孔眼内壁冲蚀形态的模型。研究结果可为水平井压裂优化施工参数和降低工具下入阻卡风险提供依据。

     

    Abstract: In order to provide a theoretical basis for optimizing horizontal well volume fracturing design and reducing the blockage and sticking risks during running fracturing tools, a self-developed large-scale field experiment simulation system for perforation erosion was utilized to conduct experiments on the casing and fracturing materials under the erosion of high-speed sand-carrying fluid. Based on the experimental data, a dynamic model was established to describe the erosion morphology of the perforation inner wall. The experimental results show that as the sand concentration in the sand-carrying fluid increases, the maximum diameter of the inner wall of the perforation and the pumping pressure drop gradually increase after erosion. The thickness of the proppant attached on the inner wall of the casing gradually increases from the heel to the toe of the wellbore, which can reduce the inner diameter of the lower string by 35 mm. As the sand concentration gradually increases, the adhesion amount gradually increases at the heel but gradually decreases at the toe of the casing. Moreover, as the sand concentration in the sand-carrying fluid increases, the degree of proppant fragmentation after erosion gradually becomes stronger, with the debris ratio going up. The reduction amplitude of fracturing fluid viscosity after erosion goes up first and then goes down, and the maximum reduction of fracturing fluid viscosity can reach 52%. A numerical model of proppant migration in the casing under high-speed erosion condition was established, and the law of proppant particle migration in the casing was analyzed. In addition, the dynamic model derived from the experiment was verified, which describes the erosion morphology of the inner wall of the perforation. The research results provide a basis for optimizing construction parameters of horizontal well fracturing and reducing the blockage and sticking risks during running fracturing tools.

     

/

返回文章
返回