Gel Breaking Mechanism of Guar Gum Fracturing Fluid by Biological Enzyme and Ammonium Persulfate
-
摘要:
为有效降低胍胶压裂液破胶后产生的残渣对地层造成的伤害,通过分析不同破胶方式下胍胶压裂液破胶液分子的物理化学性质,探究了生物酶及过硫酸铵/生物酶复合破胶剂对胍胶压裂液的破胶作用机理。研究发现,与过硫酸铵破胶剂相比,生物酶及过硫酸铵/生物酶复合破胶剂能更有效地降低破胶液的相对分子质量和分子尺寸;胍胶压裂液破胶液中的主要降解产物是二糖—五糖。胍胶压裂液破胶液残渣分析表明,残渣分子中甘露糖与半乳糖的含量比只有0.38,导致其水溶性差,这也是其存在残渣的主要原因。同时,模拟试验结果表明,注酸可以有效降解胍胶压裂液破胶液残渣含量,提高支撑剂导流能力。研究结果为破胶剂优选和降低胍胶压裂液破胶液残渣造成的伤害提供了理论依据。
Abstract:To effectively alleviate the damage of residues produced by broken guar gum fracturing fluid to the formation, the gel breaking mechanism of biological enzyme and ammonium persulfate/biological enzyme composite gel breakers on the guar gum fracturing fluid was investigated by analyzing the molecular physical and chemical properties of the gel breaking solution of guar gum fracturing fluid under different gel breaking methods. The results show that compared with ammonium persulfate gel breakers, biological enzyme and ammonium persulfate/biological enzyme composite gel breakers can effectively reduce the relative molecular weight and molecular size of gel breaking solution. The degradation products in the gel breaking solution are mainly disaccharide to pentasaccharide. The analysis of gel breaking solution residues shows that the content ratio of mannose to galactose in residue molecules is only 0.38, which is the main reason for its poor water solubility and the existence of residues in the gel breaking solution. In addition, through the simulation test, it is found that acid injection can effectively degrade the gel breaking solution residues of guar gum fracturing fluid and improve the proppant conductivity. The results can provide a theoretical basis for selecting gel breakers and reducing damage caused by gel breaking solution residues.
-
Keywords:
- guar gum fracturing fluid /
- gel breaker /
- residue /
- proppant /
- conductivity
-
-
表 1 不同破胶剂对破胶液黏度的影响
Table 1 Effect of different gel breakers on viscosity of gel breaking solutions
破胶剂及加量 破胶液黏度/(mPa·s) 过硫酸铵加量,% 生物酶加量/(mg·L−1) 1 h 2 h 3 h 4 h 0.050 61.32 31.67 1.97 1.29 10 40.43 22.74 1.82 1.16 0.025 5 42.57 24.81 1.99 1.21 0.050 10 20.64 3.53 1.82 1.12 表 2 不同破胶剂及不同破胶时间下破胶液的相对分子质量
Table 2 Relative molecular weight of different gel breakers and gel breaking solutions under different gel breaking time
破胶剂及加量 相对分子质量 相对分子质量
降低率,%4 h 12 h 0.05%过硫酸铵 515 600 398 200 22.77 10 mg/L生物酶 139 700 50 300 64.00 0.025%过硫酸铵+5 mg/L生物酶 329 100 63 000 80.86 0.050%过硫酸铵+10 mg/L生物酶 133 400 29 700 77.74 表 3 不同破胶剂及不同破胶时间下破胶液的分子尺寸
Table 3 Molecular size of different gel breakers and gel breaking solutions under different gel breaking time
破胶剂及加量 粒径中值/μm 粒径中值
降低率,%4 h 12 h 0.050%过硫酸铵 132 123 6.81 10 mg/L生物酶 57 43 24.56 0.025%过硫酸铵+5 mg/L生物酶 66 46 30.30 0.050%过硫酸铵+10 mg/L生物酶 41 35 14.63 表 4 不同破胶剂下各低聚糖的含量
Table 4 Content of oligosaccharides under different gel breakers
破胶剂 单糖含量,% 二糖—五糖含量,% 六糖—十糖含量,% 4 h 12 h 4 h 12 h 4 h 12 h 1 0.2 0.8 79.1 80.9 20.7 18.3 2 0.3 1.0 77.3 78.6 22.4 20.4 3 0.5 1.3 83.7 85.1 15.8 13.6 注:破胶剂1为10 mg/L,破胶剂2为0.025%过硫酸铵+5 mg/L生物酶,破胶剂3为0.050%过硫酸铵+10 mg/L生物酶。 表 5 支撑剂导流能力恢复测试结果
Table 5 Results of proppant conductivity recovery test
破胶剂 导流能力/(mD·m) 导流能力
恢复率,%伤害前 解除伤害后 0.050%过硫酸铵 236 214 90.7 10 mg/L生物酶 259 239 92.3 0.025%过硫酸铵+5 mg/L生物酶 246 232 94.3 -
[1] 陈大钧,陈馥. 油气田应用化学[M]. 北京:石油工业出版社,2006:99-100. CHEN Dajun, CHEN Fu. Applied chemistry of oil and gas fie-lds[M]. Beijing: Petroleum Industry Press, 2006: 99-100.
[2] 李刚,铁忠银. HZY-1、HZY-2低温破胶压裂液的研究及应用[J]. 石油钻探技术,1998,26(1):46–48. LI Gang, TIE Zhongyin. Development and application of HZY-1, HZY-2 low temperature fracturing fluid for gel breaking[J]. Petroleum Drilling Techniques, 1998, 26(1): 46–48.
[3] 余翠沛,张滨海,李紫晗,等. 临兴区块致密气储层压裂损害影响因素[J]. 特种油气藏,2022,29(1):141–146. doi: 10.3969/j.issn.1006-6535.2022.01.021 YU Cuipei, ZHANG Binhai, LI Zihan, et al. On factors influencing fracture damage in tight gas reservoirs, Linxing Block[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 141–146. doi: 10.3969/j.issn.1006-6535.2022.01.021
[4] 刘立宏,王娟娟,高春华. 多元改性速溶胍胶压裂液研究与应用[J]. 石油钻探技术,2015,43(3):116–119. LIU Lihong, WANG Juanjuan, GAO Chunhua. Research and application of a multicomponent modified instant guar fracturing fluid[J]. Petroleum Drilling Techniques, 2015, 43(3): 116–119.
[5] WEAVER J, SCHMELZL E, JAMIESON M, et al. New fluid technology allows fracturing without internal breakers[R]. SPE 75690, 2002.
[6] 王红科,刘音,何武,等. 高温水配制压裂液技术研究与现场应用[J]. 钻井液与完井液,2020,37(3):384–388. doi: 10.3969/j.issn.1001-5620.2020.03.020 WANG Hongke, LIU Yin, HE Wu, et al. Preparation of fracturing fluids with hot water[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 384–388. doi: 10.3969/j.issn.1001-5620.2020.03.020
[7] 刘平礼,张璐,邢希金,等. 瓜胶压裂液对储层的伤害特性[J]. 油田化学,2014,31(3):334–338. LIU Pingli, ZHANG Lu, XING Xijin, et al. Characteristics of formation damage by Guar-Gum fracturing fluids[J]. Oilfield Chemistry, 2014, 31(3): 334–338.
[8] 乔东宇,郑义平,冉照辉,等. 低伤害压裂液在苏里格气田的应用[J]. 钻井液与完井液,2012,29(2):71–72. doi: 10.3969/j.issn.1001-5620.2012.02.023 QIAO Dongyu, ZHENG Yiping, RAN Zhaohui, et al. Application of low-damage fracturing fluid system in Block Su77 of Sulige Gas Field[J]. Drilling Fluid & Completion Fluid, 2012, 29(2): 71–72. doi: 10.3969/j.issn.1001-5620.2012.02.023
[9] 乔红军,马春晓,高志亮,等. 适用于低渗透储层的有机硼胍胶压裂液体系的制备与性能评价[J]. 油田化学,2020,37(2):204–207. QIAO Hongjun, MA Chunxiao, GAO Zhiliang, et al. Preparation and performance evaluation of organic boron guanidine gum fracturing fluid for the low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(2): 204–207.
[10] 刘合,肖丹凤. 新型低损害植物胶压裂液及其在低渗透储层中的应用[J]. 石油学报,2008,29(6):880–884. doi: 10.3321/j.issn:0253-2697.2008.06.017 LIU He, XIAO Danfeng. A novel low-damage vegetable gum-based fracturing fluid and its application in low-permeability reservoirs[J]. Acta Petrolei Sinica, 2008, 29(6): 880–884. doi: 10.3321/j.issn:0253-2697.2008.06.017
[11] 管保山,丛连铸,丁里,等. 延迟破胶及强制裂缝闭合技术的研究及应用[J]. 钻井液与完井液,2006,23(4):62–64. doi: 10.3969/j.issn.1001-5620.2006.04.019 GUAN Baoshan, CONG Lianzhu, DING Li, et al. Research and application of delayed break and forced fracture closure technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(4): 62–64. doi: 10.3969/j.issn.1001-5620.2006.04.019
[12] WEAVER J, PARKER M, SLABAUGH B, et al. Application of new viscoelastic fluid technology results in enhanced fracture productivity[R]. SPE 71662, 2001.
[13] VONEIFF G W, ROBINSON B M, HOLDITCH S A. The effects of unbroken fracture fluid on gas well performance[R]. SPE 26664, 1993.
[14] 李建山,陆红军,王平,等. 生物酶破胶剂在气井压裂中的研究与应用[J]. 钻井液与完井液,2012,29(6):71–73. doi: 10.3969/j.issn.1001-5620.2012.06.022 LI Jianshan, LU Hongjun, WANG Ping, et al. Research and application on enzyme breaker of fracturing in gas well[J]. Drilling Fluid & Completion Fluid, 2012, 29(6): 71–73. doi: 10.3969/j.issn.1001-5620.2012.06.022
[15] 徐晓峰,郭旭跃,胡佩. 新型压裂液低温破胶体系的研制[J]. 特种油气藏,2004,11(6):89–91. doi: 10.3969/j.issn.1006-6535.2004.06.029 XU Xiaofeng, GUO Xuyue, HU Pei. Development of a new low temperature breaking system of fracture fluid[J]. Special Oil & Gas Reservoirs, 2004, 11(6): 89–91. doi: 10.3969/j.issn.1006-6535.2004.06.029
[16] MUDGIL D, BARAK S, KHATKAR B S. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum[J]. Carbohydrate Polymers, 2012, 90(1): 224–228. doi: 10.1016/j.carbpol.2012.04.070
[17] LI Dandan, YANG Na, ZHANG Yao, et al. Structural and physicochemical changes in guar gum by alcohol-acid treatment[J]. Carbohydrate Polymers, 2018, 179: 2–9. doi: 10.1016/j.carbpol.2017.09.057
[18] SY/T 7627—2021 水基压裂液技术要求[S]. SY/T 7627—2021 Technical requirements of water-based fracturing fuid[S].
[19] 周建平,杨战伟,徐敏杰,等. 工业氯化钙加重胍胶压裂液体系研究与现场试验[J]. 石油钻探技术,2021,49(2):96–101. doi: 10.11911/syztjs.2021014 ZHOU Jianping, YANG Zhanwei, XU Minjie, et al. Research and field tests of weighted fracturing fluids with industrial calcium chloride and guar gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96–101. doi: 10.11911/syztjs.2021014
[20] CHENG Yu, BROWN K M, PRUD’HOMME R K. Characterization and intermolecular interactions of hydroxypropyl guar solutions[J]. Biomacromolecules, 2002, 3(3): 456–461. doi: 10.1021/bm0156227
[21] BURKE M D, PARK J O, SRINIVASARAO M, et al. Diffusion of macromolecules in polymer solutions and gels: a laser scanning confocal microscopy study[J]. Macromolecules, 2000, 33(20): 7500–7507. doi: 10.1021/ma000786l
-
期刊类型引用(6)
1. 张欣. 华家地区水平井个性化部署及模式化导向技术. 石油知识. 2024(01): 58-59 . 百度学术
2. 刘有武. 元素录井在陇东区块长7段致密油储层水平井地质导向中的研究与应用. 录井工程. 2024(01): 40-46 . 百度学术
3. 阚洪阁,薛杰,罗腾跃,张昆,杜奎甫,朱明,俞天军,陈刚. 延113—延133井区水平井钻遇地层特征及地质导向. 非常规油气. 2022(01): 57-64 . 百度学术
4. 张稳,张雷,黄力,李小刚,石石,孙雪冬,赵龙梅,戴瑞瑞,童姜楠. 低勘探程度区煤系致密气水平井地质导向技术及应用——以DJ-P37井区为例. 煤田地质与勘探. 2022(09): 171-180 . 百度学术
5. 豆志远,王昆剑,李进,谢小品,李瑞峰,朱培,王伟. 渤海油田水平分支井钻完井关键技术. 特种油气藏. 2020(02): 157-163 . 百度学术
6. 阎荣辉,田伟志,鲍永海,武星,杨森,沈柏坪. 元素录井技术在鄂尔多斯盆地致密砂岩水平井地质导向中的研究与应用. 录井工程. 2020(04): 22-28 . 百度学术
其他类型引用(1)