Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage
-
摘要:
准确预测固井循环阶段井筒温度场有助于水泥浆性能参数的设计和井筒压力的计算,为此,基于井筒流动机理和传热学理论,考虑不同区域差异对传热过程的影响和不同流体热力学参数差异及其随井深变化的特点,结合流体界面位置描述方程,建立了适用于深水固井循环阶段的井筒温度场预测模型。利用2口井的实测数据对模型进行了验证,并进行了关键因素的影响规律分析。结果表明:注入水泥浆之前,钻井液应循环2~4周,以降低注入过程中循环时间改变对井底循环温度的影响;注入水泥浆过程中,排量越大,周围环境的升温或降温作用越不明显;计算过程中,若不考虑温度对比热容的影响,则预测的井底循环温度会偏高2~4 ℃;水泥浆密度对温度的影响规律与传热方向有关。研究结果对深水固井具有一定的指导作用。
Abstract:Accurate prediction of the wellbore temperature field during the cementing circulation stage contributes to the design of cement slurry performance parameters and the calculation of wellbore pressure. Therefore, based on the wellbore flow mechanism and heat transfer theory, the influence of different regional differences on the heat transfer process was considered, and the discrepancy of different fluid thermodynamic parameters and their characteristics of variation with well depth were analyzed. Combined with the fluid interface position description equation, a set of wellbore temperature field prediction models suitable for the deepwater cementing circulation stage was established. The model was verified by the measured data from two wells, and the key influencing factors were analyzed. The results show that the drilling fluid should be circulated for 2~4 cycles prior to cement slurry injection, so as to reduce the impact of circulation time changes on the bottom hole circulating temperature (BHCT) during the injection. During the cement slurry injection process, larger flow rate causes less obvious warming or cooling of the surrounding environment. If the influence of temperature on specific heat capacity is not considered in the calculation process, it is predicted that the BHCT will be 2~4 °C higher. The influence of cement slurry density on temperature is related to the direction of heat transfer. The research results can be used to guide deepwater cementing.
-
-
表 1 不同类型流体比热容与温度关系式的回归系数
Table 1 Regression coefficient of specific heat capacity variation with temperature for different types of fluid
流体类型 回归系数 A B C 前置液 0.0227 19.985 0 2675.5 钻井液 0.0224 8.4234 2275.9 水泥浆 0.3242 −18.199 0 1824.6 表 2 固井工作液基础参数
Table 2 Basic parameters of cementing fluid
流体类型 体积/m3 密度/(kg·m−3) 排量(L·s−1) 隔离液 22.7 1 800 28.3 冲洗液 7.3 1 020 13.6 水泥浆 65.6 1 900 15.1 后置液 11.1 1 040 25.3 顶替液 30.5 1 000 10.1 -
[1] 刘金璐,李军,何举涛,等. 控压固井注入阶段流体密度和流变性分段预测方法[J]. 石油钻探技术,2024,52(1):45–53. doi: 10.11911/syztjs.2024005 LIU Jinlu, LI Jun, HE Jutao, et al. A segmented prediction method for fluid density and rheology during managed pressure cementing injection stage[J]. Petroleum Drilling Techniques, 2024, 52(1): 45–53. doi: 10.11911/syztjs.2024005
[2] 刘金璐,李军,李辉,等. 控压固井注入阶段井筒压力预测模型[J]. 钻井液与完井液,2024,41(2):231–238. doi: 10.12358/j.issn.1001-5620.2024.02.013 LIU Jinlu, LI Jun, LI Hui, et al. A model for predicting wellbore pressure during the managed pressure cementing injection stage[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 231–238. doi: 10.12358/j.issn.1001-5620.2024.02.013
[3] 王雪瑞. 深水固井气窜机理与环空带压演化规律[D]. 青岛:中国石油大学(华东),2019. WANG Xuerui. Gas migration mechanisms and casing pressure evolution during deep-water well cementing[D]. Qingdao: China University of Petroleum (East China), 2019.
[4] 高永海,孙宝江,王志远,等. 深水钻探井筒温度场的计算与分析[J]. 中国石油大学学报(自然科学版),2008,32(2):58–62. doi: 10.3321/j.issn:1673-5005.2008.02.012 GAO Yonghai, SUN Baojiang, WANG Zhiyuan, et al. Calculation and analysis of wellbore temperature field in deepwater drilling[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(2): 58–62. doi: 10.3321/j.issn:1673-5005.2008.02.012
[5] 王江帅,李军,柳贡慧,等. 循环钻进过程中井筒温度场新模型[J]. 断块油气田,2018,25(2):240–243. WANG Jiangshuai, LI Jun, LIU Gonghui, et al. New model of wellbore temperature field during drilling process[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 240–243.
[6] 苏雄,杨明合,陈伟峰,等. 顺北一区小井眼超深井井筒温度场特征研究与应用[J]. 石油钻探技术,2021,49(3):67–74. SU Xiong, YANG Minghe, CHEN Weifeng, et al. Study and application of wellbore temperature field characteristics in the ultra-deep slim-hole wells in the Shunbei No.1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67–74.
[7] 董胜伟,王子健,曹 飞,等. 深水浅部水合物储层水平井井筒温度计算模型[J]. 特种油气藏,2020,27(5):157–161. DONG Shengwei, WANG Zijian, CAO Fei, et al. Wellbore temperature calculation model for horizontal wells in shallow hydrate reservoirs in deep water[J]. Special Oil and Gas Reservoirs, 2020, 27(5): 157–161.
[8] 赵向阳,赵聪,王鹏,等. 超深井井筒温度数值模型与解析模型计算精度对比研究[J]. 石油钻探技术,2022,50(4):69–75. ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells [J]. Petroleum Drilling Techniques, 2022, 50(4): 69–75.
[9] API SPEC 10 Specifications for materials and testing for well cement[S].
[10] BITTLESTON S H. A two-dimensional simulator to predict circulating temperatures during cementing operations[R]. SPE 20448, 1990.
[11] GUILLOT F, BOISNAULT J M, HUJEUX J C. A cementing temperature simulator to improve field practice[R]. SPE 25696, 1993.
[12] 尹成,何世明,徐壁华,等. 对常规注水泥温度场预测方法的评价[J]. 西南石油学院学报,1999,21(4):57–60. YIN Cheng, HE Shiming, XU Bihua, et al. Evaluation of the predicting method of temperature for conventional cementing[J]. Journal of Southwest Petroleum Institute, 1999, 21(4): 57–60.
[13] 刘洋,艾正青,李早元,等. 注水泥循环温度影响因素探讨[J]. 西南石油大学学报(自然科学版),2012,34(1):154–158. LIU Yang, AI Zhengqing, LI Zaoyuan, et al. Discussion on the influence factors of cementing circulating temperature[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(1): 154–158.
[14] 赵琥,温达洋,冯颖韬,等. 深水固井温度场分布影响因素研究[J]. 中国造船,2019,60(4):135–145. doi: 10.3969/j.issn.1000-4882.2019.04.015 ZHAO Hu, WEN Dayang, FENG Yingtao, et al. Study on influencing factors of temperature field in deep water cementing[J]. Ship Building of China, 2019, 60(4): 135–145. doi: 10.3969/j.issn.1000-4882.2019.04.015
[15] 郝锋,孙宝江,王雪瑞. 考虑水泥水化的固井井筒温度压力耦合计算模型[C]//. 第三十一届全国水动力学研讨会论文集(下册). 北京:海洋出版社,2020:221-228. HAO Feng, SUN Baojiang, WANG Xuerui. Coupling calculation model of cementing wellbore temperature and pressure considering cement hydration[C]//Proceedings of the Thirty-first National Symposium on Hydrodynamics (Volume 2). Beijing: China Ocean Press, 2020: 221-228.
[16] DILLENBECK R L, HEINOLD T, ROGERS M J, et al. The effect of cement heat of hydration on the maximum annular temperature of oil and gas wells[J]. SPE Drilling & Completion, 2003, 18(4): 284-292.
[17] 杨志伏. 基于水泥凝固过程的油井结构应力分析[D]. 哈尔滨:哈尔滨工业大学,2013. YANG Zhifu. The stress analyses of oil well structures based on cement solidification process[D]. Harbin: Harbin Institute of Technology, 2013.
[18] 王雪瑞,孙宝江,刘书杰,等. 基于水化反应动力学的深水固井井筒温度与压力耦合预测模型[J]. 石油勘探与开发,2020,47(4):809–818. WANG Xuerui, SUN Baojiang, LIU Shujie, et al. A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water[J]. Petroleum Exploration and Development, 2020, 47(4): 809–818.
[19] 郑睿,郭玉超,张春晖,等. 热物性参数对水泥浆循环温度的影响规律[J]. 钻井液与完井液,2023,40(6):787–792. doi: 10.12358/j.issn.1001-5620.2023.06.013 ZHENG Rui, GUO Yuchao, ZHANG Chunhui, et al. Effects of thermal physical parameters on circulation temperature of cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 787–792. doi: 10.12358/j.issn.1001-5620.2023.06.013
[20] 杨宏伟,李军,柳贡慧,等. 深水多梯度钻井井筒温度场[J]. 中国石油大学学报(自然科学版),2020,44(5):62–69. doi: 10.3969/j.issn.1673-5005.2020.05.008 YANG Hongwei, LI Jun, LIU Gonghui, et al. Wellbore temperature profiling for deepwater multi-gradient drilling[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(5): 62–69. doi: 10.3969/j.issn.1673-5005.2020.05.008
[21] 吴雪婷,王江帅,冯炜. 深水油气井环空圈闭压力研究[J]. 石油机械,2018,46(12):47–50. WU Xueting, WANG Jiangshuai, FENG Wei. Research on annular pressure buildup in deepwater oil and gas well[J]. China Petroleum Machinery, 2018, 46(12): 47–50.
[22] 杨进,唐海雄,刘正礼,等. 深水油气井套管环空压力预测模型[J]. 石油勘探与开发,2013,40(5):616–619. YANG Jin, TANG Haixiong, LIU Zhengli, et al. Prediction model of casing annulus pressure for deepwater well drilling and completion operation[J]. Petroleum Exploration and Development, 2013, 40(5): 616–619.
[23] 冯福平. 偏心环空注水泥顶替界面边界及形状描述模型研究[D]. 大庆:东北石油大学,2014. FENG Fuping. Research on the calculation model of displacement interface boundary and shape during cementing in eccentric annulus[D]. Daqing: Northeast Petroleum University, 2014.
[24] PETERSEN J, BJØRKEVOLL K S, LEKVAM K. Computing the danger of hydrate formation using a modified dynamic kick simulator[R]. SPE 67749, 2001.
[25] FÉNOT M, BERTIN Y, DORIGNAC E, et al. A review of heat transfer between concentric rotating cylinders with or without axial flow[J]. International Journal of Thermal Sciences, 2011, 50(7): 1138–1155. doi: 10.1016/j.ijthermalsci.2011.02.013
[26] 张朝举,李军,杨宏伟,等. 高压盐水层控压放水模拟计算研究[J]. 钻采工艺,2021,44(3):1–4. ZHANG Chaoju, LI Jun, YANG Hongwei, et al. Simulation computation of pressure-controlled drainage in high-pressure brine lay-er[J]. Drilling & Production Technology, 2021, 44(3): 1–4.
[27] 刘洋. 尾管注水泥循环温度预测模型研究[D]. 成都:西南石油大学,2009. LIU Yang. Research on prediction model of liner cementing cycle temperature[D]. Chengdu: Southwest Petroleum University, 2009.
-
期刊类型引用(2)
1. 刘金璐,李军,柳贡慧,李宁,张权,周宝,孙红宇. 控压固井分段降密度环节井筒温压场预测模型研究. 石油科学通报. 2025(01): 107-119 . 百度学术
2. 戴亚,茆长杨,王康兴,徐子锋. 散粮带式输送机温度监控系统的设计及应用. 现代食品. 2024(18): 15-19+23 . 百度学术
其他类型引用(0)