钻井液流变参数在线校准方法研究

杨海, 杨兵祥

杨海,杨兵祥. 钻井液流变参数在线校准方法研究[J]. 石油钻探技术,2024,52(4):57-65. DOI: 10.11911/syztjs.2024062
引用本文: 杨海,杨兵祥. 钻井液流变参数在线校准方法研究[J]. 石油钻探技术,2024,52(4):57-65. DOI: 10.11911/syztjs.2024062
YANG Hai, YANG Bingxiang. Online calibration method for rheological parameters of drilling fluid [J]. Petroleum Drilling Techniques, 2024, 52(4):57-65. DOI: 10.11911/syztjs.2024062
Citation: YANG Hai, YANG Bingxiang. Online calibration method for rheological parameters of drilling fluid [J]. Petroleum Drilling Techniques, 2024, 52(4):57-65. DOI: 10.11911/syztjs.2024062

钻井液流变参数在线校准方法研究

基金项目: 四川省科技计划项目“煤层气多分支井轨迹近钻头MEMS随钻动态测量方法研究”(编号:2022YFG0243)资助。
详细信息
    作者简介:

    杨海(1988—),男,四川德阳人,2011年毕业于中国矿业大学机械电子工程专业,2016年获中国矿业大学机械电子工程专业博士学位,副教授,硕士生导师,主要从事钻井液性能监测、随钻测量研究。E-mail:yanghaiswpu@163.com

  • 中图分类号: TE254+.1

Online Calibration Method for Rheological Parameters of Drilling Fluid

  • 摘要:

    目前钻井现场主要采用旋转黏度计手动方式测量钻井液的流变性,测量周期长、人为干扰因素大。同时,现有管式黏度计在线测量装置受抽取钻井液隔膜泵的流体脉动、电机振动及压差测量偏置误差等因素影响,测量精度与稳定性较差。针对上述问题,在双管压差管式黏度计的基础上,提出了基于经验模态分解与极大似然估计的钻井液流变参数在线校准方法。首先,利用压差传感器测量数据建立经验模态分解模型,提取隔膜泵脉动、电机振动及测量误差导致的干扰信号,实现对恒流压差信号的准确识别;然后,建立管式黏度计的流变参数解算模型,利用双测量管的剪切应力−剪切速率曲线,建立极大似然估计的钻井液剪切应力参数校准模型;最后,利用搭建的钻井液性能在线监测试验装置进行了试验验证,利用该钻井液流变参数在线校准方法得到的表观黏度、塑性黏度、动切力等参数的精度均显著优于未校准参数的精度,且表观黏度、塑性黏度、动切力测量值的相对误差均小于5%,满足钻井现场测试要求。研究结果表明,该方法有效、精度高,为实现钻井液流变参数快速准确测量提供了新途径。

    Abstract:

    Currently, manual measurement methods such as rotational viscosimeters are mainly used on drilling sites, with long measurement cycles and human interference factors. The existing online measurement devices such as tubular viscometers are affected by factors such as fluid pulsation of the diaphragm pump for extracting drilling fluid, motor vibration, and pressure difference measurement bias error, resulting in poor measurement accuracy and stability. An online calibration method for rheological parameters of drilling fluid based on empirical mode decomposition and maximum likelihood estimation was proposed on the basis of the tubular viscometer of double-tube pressure difference to address the above issues. Firstly, an empirical mode decomposition model was established using measurement data from the pressure difference sensor to extract interference signals caused by diaphragm pump pulsation, motor vibration, and measurement errors, thereby achieving accurate identification of constant current pressure difference signals. Then, a rheological parameter calculation model for the tubular viscometer was established, and the shear stress-shear rate curve of the double tubes was used to establish a calibration model for shear stress parameters of drilling fluid based on the maximum likelihood estimation. Finally, the established online monitoring and testing platform for drilling fluid performance was used for experimental verification. The measurement accuracy of apparent viscosity, plastic viscosity, and dynamic shear force obtained by the proposed online calibration method for rheological parameters was significantly better than that of uncalibrated parameters, and the relative errors of measured apparent viscosity, plastic viscosity, and dynamic shear force were all less than 5%, meeting the requirements of on-site drilling testing. The results show that the method is effective and has high precision, which provides a new way for rapid and accurate measurement of rheological parameters of drilling fluid.

  • 图  1   管流式钻井液流变参数在线测量装置示意

    Figure  1.   Online measurement device for rheological parameters of tubular drilling fluid

    图  2   基于经验模态分解与极大似然估计的钻井液流变参数校准方法流程

    Figure  2.   Flow chart of rheological parameter calibration of drilling fluid based on empirical mode decomposition and maximum likelihood estimation

    图  3   压差传感器测得测量管两端的原始压差

    Figure  3.   Original pressure difference of two ends of measuring tube collected by pressure difference sensor

    图  4   长测量管两端压差经验模态分解波形

    Figure  4.   Waveform of empirical mode decomposition of parameters pressure difference at two ends of long measuring tube

    图  5   经过经验模态分解后的测量管两端的压差

    Figure  5.   Pressure difference at two ends of measuring tube after empirical mode decomposition

    图  6   第4组钻井液的流变特性曲线

    Figure  6.   Rheological property curve of drilling fluid in group 4

    图  7   第7组钻井液的流变特性曲线

    Figure  7.   Rheological property curve of drilling fluid in group 7

    图  8   第10组钻井液的流变特性曲线

    Figure  8.   Rheological property curve of drilling fluid in group 10

    图  9   10组钻井液的流变参数的对比

    Figure  9.   Comparison of rheological parameters of 10 groups of drilling fluid

    图  10   10组钻井液流变参数测量误差的对比

    Figure  10.   Comparison of measurement errors of rheological parameters of 10 groups of drilling fluid

    表  1   六速旋转黏度计测量的钻井液流变参数

    Table  1   Rheological parameter of drilling fluid measured by six-speed rotational viscosimeter

    序号 表观黏度/(mPa∙s) 塑性黏度/(mPa∙s) 动切力/Pa
    1 17.9 17.0 0.5
    2 25.0 23.0 1.0
    3 27.3 27.0 1.3
    4 36.3 34.0 1.5
    5 42.7 36.5 5.4
    6 46.8 41.5 4.3
    7 60.8 52.0 7.7
    8 70.0 58.0 10.7
    9 83.3 68.0 13.8
    10 92.5 69.5 21.5
    下载: 导出CSV

    表  2   10组钻井液的流变参数测量误差统计结果

    Table  2   Measurement errors of rheological parameters of 10 groups of drilling fluid

    参数 测量方法 绝对误差最大值 相对误差最大值,% 绝对误差平均值 绝对误差方差
    表观黏度 直接测量 25.00 +139.00 10.67 53.63
    校准后 −2.93 −4.72 1.35 0.94
    塑性黏度 直接测量 41.20 +242.00 14.35 161.88
    校准后 1.80 −4.81 0.71 0.35
    动切力 直接测量 11.18 −208.00 6.96 11.03
    校准后 −0.38 +4.59 0.13 0.01
    下载: 导出CSV
  • [1] 许利辉,陈仙江. 钻井液性能自动化在线测量研究[J]. 长江大学学报(自然科学版),2017,14(19):68–74. doi: 10.3969/j.issn.1673-1409.2017.19.015

    XU Lihui, CHEN Xianjiang. Automatic online detection of drilling fluid performance[J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(19): 68–74. doi: 10.3969/j.issn.1673-1409.2017.19.015

    [2] 李宁,刘洪涛,张权,等. 大温压域钻井液流变参数预测模型[J]. 钻井液与完井液,2023,40(2):143–155.

    LI Ning, LIU Hongtao, ZHANG Quan, et al. Model for predicting drilling fluid rheological parameters in wide temperature and pressure range[J]. Drilling Fluid & Completion Fluid, 2023, 40(2): 143–155.

    [3] 余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20.

    YU Yi, WANG Xuerui, KE Ke,et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in Arctic region [J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20.

    [4] 张志财,刘保双,王忠杰,等. 钻井液性能在线监测系统的研制与现场应用[J]. 钻井液与完井液,2020,37(5):597–601.

    ZHANG Zhicai, LIU Baoshuang, WANG Zhongjie, et al. Development and field application of an online drilling fluid property monitoring system[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 597–601.

    [5]

    SAASEN A, OMLAND T H, EKRENE S, et al. Automatic measurement of drilling fluid and drill-cuttings properties[J]. SPE Drilling & Completion, 2009, 24(4): 611–625.

    [6] 张圆圆,陈春瑞,赵文鑫,等. 基于管流法和旋转法的洗煤泥流变特性比较研究[J]. 煤炭转化,2023,46(1):81–88.

    ZHANG Yuanyuan, CHEN Chunrui, ZHAO Wenxin, et al. Comparative study on rheological characteristics of coal sludge based on tube-flowing method and rotation method[J]. Coal Conversion, 2023, 46(1): 81–88.

    [7] 张勇,张长亮,李江,等. 钻井液自动在线测量技术和应用介绍[J]. 石油化工自动化,2021,57(增刊1):141-145.

    ZHANG Yong, ZHANG Changliang, LI Jiang, et al. Technology and application introduction of automatic on-line measurement for drilling fluid[J]. Automation in Petro-Chemical Industry, 2021, 57(supplement 1): 141-145.

    [8] 肖俊建. 单缸双作用隔膜泵脉动消减技术研究[J]. 流体机械,2005,33(6):45–47. doi: 10.3969/j.issn.1005-0329.2005.06.013

    XIAO Junjian. Research on flux pulsation decreases of single cylinder double acting diaphragm pump[J]. Fluid Machinery, 2005, 33(6): 45–47. doi: 10.3969/j.issn.1005-0329.2005.06.013

    [9] 孙婉婷,唐秀丽. 往复式液压隔膜泵系统流量脉动控制分析研究[J]. 科技通报,2015,31(12):125–127. doi: 10.3969/j.issn.1001-7119.2015.12.046

    SUN Wanting, TANG Xiuli. Research on flow pulsation control of reciprocating hydraulic-driven diaphragm pump system[J]. Bulletin of Science and Technology, 2015, 31(12): 125–127. doi: 10.3969/j.issn.1001-7119.2015.12.046

    [10] 马育,滕汉东. 用于原油管道减振的吸振器阻抗研究[J]. 振动、测试与诊断,2023,43(5):1001-1004.

    MA Yu, TENG Handong. Impedance analysis of tuned vibration absorbers for oil pipeline vibration control[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(5): 1001-1004.

    [11] 谢辉,郑立群,刘福林,等. 钻井液漏斗黏度和密度自动检测仪的研制与应用[J]. 煤田地质与勘探,2024,52(3):176–183. doi: 10.12363/issn.1001-1986.23.06.0384

    XIE Hui, ZHENG Liqun, LIU Fulin, et al. Development and application of an automatic online testing instrument for the funnel viscosity and density of drilling fluids[J]. Coal Geology & Exploration, 2024, 52(3): 176–183. doi: 10.12363/issn.1001-1986.23.06.0384

    [12] 孙浩玉,周延军,刘海东. 变径异型管式钻井液流变性在线监测装置研究与应用[J]. 中外能源,2019,24(12):49–54.

    SUN Haoyu, ZHOU Yanjun, LIU Haidong. Research and application of online monitoring device for rheology of drilling fluid with the type of altered-diameter shaped tube[J]. Sino-Global Energy, 2019, 24(12): 49–54.

    [13]

    YIN Jisen, LI Jian, XIAO You. A new methodology of nonlinear parameter approximation used for rheological model of drilling fluids[C]//2011 Seventh International Conference on Natural Computation. Piscataway, NJ: IEEE Press, 2011: 1919-1922.

    [14] 宋雷,游东东,郑振兴,等. 基于经验模态分解的RV减速器运动参数降噪研究[J]. 振动与冲击,2022,41(18):266–272.

    SONG Lei, YOU Dongdong, ZHENG Zhenxing, et al. Denoising of the kinetic parameters of a RV reducer based on an EMD al-gorithm[J]. Journal of Vibration and Shock, 2022, 41(18): 266–272.

    [15] 梁海波,宋洋,于志刚,等. 钻井液流变性实时测量方法及系统研究[J]. 石油机械,2022,50(1):10–18.

    LIANG Haibo, SONG Yang, YU Zhigang, et al. Real-time measurement method and systematic study on drilling fluid rheology[J]. China Petroleum Machinery, 2022, 50(1): 10–18.

    [16] 樊洪海,冯广庆,王果,等. 一种新的流变模式及其应用性评价[J]. 中国石油大学学报(自然科学版),2010,34(5):89–93.

    FAN Honghai, FENG Guangqing, WANG Guo, et al. A new rheological model and its application evaluation[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(5): 89–93.

    [17] 张晋凯,李根生,郭宇健. 钻井液流变模式的优选与评价[J]. 科学技术与工程,2013,13(26):7619–7623. doi: 10.3969/j.issn.1671-1815.2013.26.004

    ZHANG Jinkai, LI Gensheng, GUO Yujian. Optimization and evaluation on drilling fluid rheological model[J]. Science Technology and Engineering, 2013, 13(26): 7619–7623. doi: 10.3969/j.issn.1671-1815.2013.26.004

    [18] 柳贡慧,杨宏伟,李军,等. 考虑分段流变模式的深井井筒压力精确预测模型[J]. 钻采工艺,2024,47(2):42–50. doi: 10.3969/J.ISSN.1006-768X.2024.02.06

    LIU Gonghui, YANG Hongwei, LI Jun, et al. An accurate prediction model of wellbore pressure in deep wells considering segmental rheological patterns[J]. Drilling & Production Technology, 2024, 47(2): 42–50. doi: 10.3969/J.ISSN.1006-768X.2024.02.06

    [19] 蓝康孟,陈海军,傅景峰. 一种适合于测量中动态校准建立数学模型的极大似然法[J]. 计量学报,1992,13(3):228–234.

    LAN Kangmeng, CHEN Haijun, FU Jingfeng. A special maximum likelihood method for building up mathematic model in dynamic calibration[J]. Acta Metrologica Sinica, 1992, 13(3): 228–234.

    [20] 冯旭,孙大荃,李仁英,等. 基于极大似然法的土壤重金属删失数据的相关性[J]. 中国环境科学,2022,42(10):4713–4719. doi: 10.3969/j.issn.1000-6923.2022.10.029

    FENG Xu, SUN Daquan, LI Renying, et al. Correlation of soil heavy metal censored data based on maximum likelihood method[J]. China Environmental Science, 2022, 42(10): 4713–4719. doi: 10.3969/j.issn.1000-6923.2022.10.029

  • 期刊类型引用(7)

    1. 王文娟,罗文利,孙炜,邹新源. 高温高盐油藏泡沫配方体系研究进展. 现代化工. 2023(09): 42-46 . 百度学术
    2. 张强,吴晓燕,胡雪,赵军,陈平,郑继龙,翁大丽. 氮气泡沫体系性能的影响因素实验研究. 当代化工. 2020(07): 1379-1383 . 百度学术
    3. 张瑞香,王杰,高军. 两亲聚合物泡沫在多孔介质中的渗流及分流特性. 实验室研究与探索. 2019(04): 17-20+46 . 百度学术
    4. 孙晶,付美龙,吴海俊,张泉,徐传奇. 理829井区泡沫体系筛选及性能评价. 当代化工. 2018(11): 2317-2321 . 百度学术
    5. 孙同成,李亮,周珺. 耐高温耐盐氮气泡沫调驱实验研究及应用. 石油化工应用. 2016(05): 9-13+23 . 百度学术
    6. 刘世达,张强. 强化泡沫驱复配的研究与评价. 当代化工. 2016(08): 1729-1731 . 百度学术
    7. 陶磊,李松岩,程时清. 稠油油藏水平井泡沫酸解堵技术. 石油钻探技术. 2015(06): 76-80 . 本站查看

    其他类型引用(2)

图(10)  /  表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  34
  • PDF下载量:  31
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2024-06-27
  • 网络出版日期:  2024-07-07
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回