Abstract:
The Shunbei ultra-deep and ultra-high-temperature fault-controlled oil and gas reservoir complex geology, large burial depth, high formation temperature, and high formation strength. During the drilling and completion process, complex situations such as leakage, collapse, gas invasion, wellbore deviation, and instrument tool failure are encountered frequently, seriously restricting the efficient exploration and development of the oil and gas field. Therefore, in order to improve the drilling speed in the Paleozoic, the drillability of the formation was investigated, and high-efficiency drill bits and long-life screws with large torque were selected, meanwhile pre-bending anti-deviation and fast drilling technology were promoted and employed. To address the issues of high reservoir temperature and difficulty in orientation, the application of high-temperature drilling tools was promoted, along with trajectory design and control technology. To avoid narrow gap leakage, “plugging while drilling + slug loss circulation control” and high-performance water-based drilling fluid were adopted. To address the issue of leakage and overflow in the same layer, managed pressure drilling and bull head method were applied to kill the well. In view of poor quality in long open hole cementing, an ultra-high-temperature cementing slurry system and supporting technology were adopted, and key technologies for improving drilling and completion speed in Shunbei ultra-deep and ultra-high-temperature oil and gas oilfield came into being. The technologies were applied in six wells in different zones of Shunbei, basically solving the problems of difficult drilling speed improvement and simultaneous leakage and overflow in ultra-deep and ultra-high-temperature oil and gas reservoirs. The drilling duration was shortened by 55.0% year on year, and the rate of penetration (ROP) was increased by 184.2%. The research results provided technical support for efficient exploration and development of Shunbei ultra-deep and ultra-high-temperature fault-controlled oil and gas reservoirs.