大排量直井段随钻测斜工具的研制与应用

许期聪, 陈东, 冯思恒

许期聪,陈东,冯思恒. 大排量直井段随钻测斜工具的研制与应用[J]. 石油钻探技术,2024, 52(2):174-180. DOI: 10.11911/syztjs.2024041
引用本文: 许期聪,陈东,冯思恒. 大排量直井段随钻测斜工具的研制与应用[J]. 石油钻探技术,2024, 52(2):174-180. DOI: 10.11911/syztjs.2024041
XU Qicong, CHEN Dong, FENG Siheng. Development and application of inclination measurement tool while drilling in vertical well sections with high flow rate [J]. Petroleum Drilling Techniques,2024, 52(2):174-180. DOI: 10.11911/syztjs.2024041
Citation: XU Qicong, CHEN Dong, FENG Siheng. Development and application of inclination measurement tool while drilling in vertical well sections with high flow rate [J]. Petroleum Drilling Techniques,2024, 52(2):174-180. DOI: 10.11911/syztjs.2024041

大排量直井段随钻测斜工具的研制与应用

基金项目: 中国石油集团科学研究与技术开发项目“万米超深层钻探关键工程技术与装备研制”(编号:2023ZZ20)及中国石油集团川庆钻探工程有限公司项目“随钻测斜工具研制”(编号:CQ2022B-13-7-3)联合资助。
详细信息
    作者简介:

    许期聪(1969—),男,四川仪陇人,1993年毕业于石油大学(华东)石油工程专业,正高级工程师,主要从事油气井钻井工程技术研究和管理工作。E-mail:xqc690118@163.com

    通讯作者:

    陈东,chendong919@126.com

  • 中图分类号: TE927

Development and Application of Inclination Measurement Tool While Drilling in Vertical Well Sections with High Flow Rate

  • 摘要:

    为解决深井、超深井上部大尺寸直井段因钻井排量高导致的随钻测斜工具冲蚀严重、故障率及成本高等问题,综合采用扩大过流面积、流场仿真优化及冲蚀剧烈区局部硬质合金保护方法,研制了大流道耐冲蚀旋转阀组;采用加速度计柔性悬浮固定、电路板有机硅灌封胶等多级复合减振方法,提高了随钻测斜工具电子电路的抗振能力;通过设计快速传输编码、低功耗电子电路及节能运行模式,提高了测斜效率与测斜工具的续航能力。通过研制关键部件大流道耐冲蚀旋转阀组,采用不同技术方法提高测斜工具的抗振能力、测斜效率和续航能力,研制了系列尺寸的大排量直井段随钻测斜工具。川渝、新疆等地区的12口井应用该工具随钻监测井斜角,该工具表现出耐大排量冲蚀的能力,最高适用排量达120 L/s,运行稳定可靠,故障率低于0.5 次/月,续航可达30 d以上。现场应用结果表明,大排量直井段随钻测斜工具能满足深井、超深井大尺寸直井段随钻测斜的要求,可为深井、超深井获得高质量直井段提供支持。

    Abstract:

    In order to solve the problems of serious erosion, high failure rate, and large cost of inclination measurement tools while drilling due to high drilling flow rate in upper large vertical well sections of deep and ultra-deep wells, the methods of expanding the flow area, simulation optimization of flow field, and local carbide protection in the area of intense erosion were comprehensively adopted, and a rotary valve group with large channel and erosion resistance was developed. Multistage composite vibration reduction methods such as flexible suspension fixing of accelerometer and silicone potting adhesive of circuit board were adopted to improve the shock resistance of electronic circuit of inclination measurement tools while drilling. By designing a fast transmission code, electronic circuit with low power consumption, and energy-saving operation mode, the efficiency and endurance of inclination measurement tools while drilling were improved. The key components of the rotary valve group with large channel and erosion resistance were developed, and the shock resistance, inclination measurement efficiency, and endurance of the inclination measurement tools were enhanced by different technical methods. An inclination measurement tool while drilling for vertical wells with a high drilling flow rate was developed. The tool was used to monitor the angle of inclination while drilling in 12 wells in Sichuan, Chongqing, and Xinjiang regions and showed the ability to withstand erosion due to the high flow rate. The maximum applicable flow rate of the tool reached 120 L/s, and the operation was stable and reliable. The failure rate was less than 0.5 times/month, and the battery could work for more than 30 days. The field application shows that the inclination measurement tool while drilling for vertical well sections with a high flow rate can meet the requirements of inclination measurement while drilling in large vertical well sections of deep and ultra-deep wells, providing support for obtaining high-quality vertical well sections of deep and ultra-deep wells.

  • 图  1   随钻测斜工具的结构

    Figure  1.   The structure of inclination measurement tool while drilling

    图  2   原ϕ133.4 mm旋转阀组和新设计ϕ152.4 mm大流道旋转阀组在120 L/s流量下阀体开口最小时的流速云图

    Figure  2.   Cloud diagram of flow rate of original ϕ133.4 mm rotary valve group and the new ϕ152.4 mm rotary valve group with large channel at a flow rate of 120 L/s and minimum valve open

    图  3   不同排量下新设计ϕ152.4 mm旋转阀组的压力脉冲幅值

    Figure  3.   Pressure pulse amplitude of the new ϕ152.4 mm rotary valve group at different flow rates

    图  4   不同方式测得的井斜角

    Figure  4.   Inclination angles measured by different methods

    表  1   随钻测斜工具的主要性能

    Table  1   Main performance of inclination measurement tools while drilling

    型号 公称直
    径/mm
    适用井眼
    直径/mm
    耐温/
    耐压/
    MPa
    适用排量/
    (L·s−1
    CQ-VMWD-11-150 279.4 ≥444.5 150 140 70~130
    CQ-VMWD-9-150 228.6 311.1~444.5 150 140 25~80
    CQ-VMWD-7-175 177.8 215.9~244.5 175 206 16~45
    下载: 导出CSV

    表  2   深地××井设计井身结构及钻井参数

    Table  2   Casing program design and drilling parameter of Well Shendi ××

    开次 井深/
    m
    钻头直径/
    mm
    钻井液密度/
    (kg·L−1
    钻压/kN 排量/
    (L·s−1
    一开 60 914.4 1.02~1.05 5~50 60~65
    二开 500 812.8 1.10~1.30 50~200 120~150
    三开 3 600 593.7 1.10~1.70 120~250 85~100
    四开 7 363 444.5 1.87~2.00 120~250 60~80
    下载: 导出CSV
  • [1] 刘岩生,张佳伟,黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报,2024,45(1):312–324.

    LIU Yansheng, ZHANG Jiawei, HUANG Hongchun. Key technologies and development direction for deep and ultra-deep drilling and completion in China[J]. Acta Petrolei Sinica, 2024, 45(1): 312–324.

    [2] 陈超峰,刘新宇,李雪彬,等. 准噶尔盆地呼探 1 井高温高压超深井试油测试技术[J]. 石油钻采工艺,2023,45(4):447–454.

    CHEN Chaofeng, LIU Xinyu, LI Xuebin, et al. High-temperature, high-pressure & ultra-deep well testing technology used in Well Hutan 1 in the Junggar Basin[J]. Oil Drilling & Production Technology, 2023, 45(4): 447–454.

    [3] 李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.

    [4] 佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示[J]. 天然气工业,2024,44(1):40–48.

    SHE Chaoyi. Progress in ultra-deep drilling and completion technology in the Sichuan Basin and its implications for extra-deep wells of more than ten thousand meters in depth[J]. Natural Gas Industry, 2024, 44(1): 40–48.

    [5] 邓虎,唐贵,张林. 超深井高温高压井筒复杂流动压力演变规律研究[J]. 西南石油大学学报(自然科学版),2023,45(4):111–120.

    DENG Hu, TANG Gui, ZHANG Lin. A study on evolution law of complex flow pressure in ultra-deep wells with high temperature and high pressure[J]. ournal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 111–120.

    [6] 万夫磊,曹晓丽,张尧,等. 川中蓬莱气区复杂超深井钻井技术研究与实践[J]. 钻采工艺,2023,46(6):34–40.

    WAN Fulei, CAO Xiaoli, ZHANG Yao, et al. Research and practice of complex ultra-deep well drilling technology in PL[J]. Drilling & Production Technology, 2023, 46(6): 34–40.

    [7] 赵常青. PP-MWD旋转阀结构优化及信号特性研究[D]. 西安:西安理工大学,2017.

    ZHAO Changqing. Structure optimization of PP-MWD rotary valve and research of signal characteristics[D]. Xi’an: Xi’an University of Technology, 2017.

    [8] 汤历平,刘宸希,张磊,等. 直井测斜泥浆脉冲发生器阀头参数优化研究[J]. 机械强度,2023,45(5):1130–1140.

    TANG Liping, LIU Chenxi, ZHANG Lei, et al. Study on the parameter optimization of valve head of vertical well inclinometer[J]. Journal of Mechanical Strength, 2023, 45(5): 1130–1140.

    [9] 张磊,李富强,陈天宇,等. 直井测斜仪阀头流场及冲蚀特性研究[J]. 石油矿场机械,2023,52(2):9–14.

    ZHANG Lei, LI Fuqiang, CHEN Tianyu, et al. Erosion characteristics of valve head in vertical well inclinometer[J]. Oil Field Equipment, 2023, 52(2): 9–14.

    [10] 王智明,邵天宇,张松炜,等. 摆动阀泥浆脉冲器传动方案设计[J]. 现代制造技术与装备,2020,56(7):28–31.

    WANG Zhiming, SHAO Tianyu, ZHANG Songwei, et al. Design of the transmission scheme of swing valve pulser based on CFD[J]. Modern Manufacturing Technology and Equipment, 2020, 56(7): 28–31.

    [11] 李沁,黄津松,石利星,等. 电子式随钻直井测斜仪在塔里木油田的应用[J]. 石化技术,2020,27(7):73–74.

    LI Qin, HUANG Jinsong, SHI Lixing, et al. Application of electronic vertical inclinometer in Tarim Oilfield[J]. Petrochemical Industry Technology, 2020, 27(7): 73–74.

    [12] 李启翠,史文专. 电子式随钻直井测斜仪在海上油气田的应用[J]. 石油管材与仪器,2016,2(5):41–43.

    LI Qicui, SHI Wenzhuan. Application of the electronic inclinometer for vertical well while drilling in offshore oilfield[J]. Petroleum Tubular Goods & Instruments, 2016, 2(5): 41–43.

    [13] 张维国. 泥浆脉冲发生器硬质合金转子失效机理及性能强化研究[D]. 长春:吉林大学,2022.

    ZHANG Weiguo. Failure mechanism and performance strengthening of cemented carbide rotor for mud pulser[D]. Changchun: Jilin University, 2022.

    [14] 鲍东升,罗登银,曲春雨,等. 耐冲蚀耐腐蚀硬质合金泥浆脉冲发生器转子及其制备方法[J]. 现代制造技术与装备,2022,58(5):112–114.

    BAO Dongsheng, LUO Dengyin, QU Chunyu, et al. Erosion resistant and corrosion resistant cemented carbide mud pulser generator rotor and fabrication technique[J]. Modern Manufacturing Technology and Equipment, 2022, 58(5): 112–114.

    [15] 药晓江,卢华涛,尚捷,等. 随钻测井仪流道转换器优化设计与数值分析[J]. 石油钻探技术,2021,49(5):121–126.

    YAO Xiaojiang, LU Huatao, SHANG Jie, et al. Optimization design and numerical analysis of flow passage converters in LWD tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121–126.

    [16]

    YUAN Peng, YU Bo, SOLOMON H, et al. Erosion of mud pulse telemetry tools: numerical simulation and field studies[R]. SPE 183823, 2017.

    [17] 王智明,肖俊远,菅志军. 基于CFD的旋转阀泥浆脉冲器转子结构参数研究[J]. 现代制造技术与装备,2011,47(6):3–4.

    WANG Zhiming, XIAO Junyuan, JIAN Zhijun. The rotor parameter study of rotary valve mud pulser base on CFD[J]. Modern Manufacturing Technology and Equipment, 2011, 47(6): 3–4.

    [18]

    MOHAMMAD E, YUAN Peng, MUHAMMAD S, et al. Erosion and structural integrity of mud pulse telemetry tools: numerical simulation and field studies[R]. OTC 29566, 2019.

    [19] 龚子华,徐秀杰,高小明. 脉冲器限位轴多冲接触疲劳性分析[J]. 钻采工艺,2009,32(1):61–63.

    GONG Zihua, XU Xiujie, GAO Xiaoming. Endurance research on rotary-valve pulser axes under multiple impact load[J]. Drilling & Production Technology, 2009, 32(1): 61–63.

    [20] 郭建军,刘海军,权景明. 无线随钻系统噪声信号分析与控制[J]. 石油矿场机械,2008,37(9):10–13.

    GUO Jianjun, LIU Haijun, QUAN Jingming. Analysis and control of system noise in MWD[J]. Oil Field Equipment, 2008, 37(9): 10–13.

    [21] 刘永彪. MCM-D薄膜多层布线工艺技术研究[J]. 电子工艺技术,2016,37(5):257–259.

    LIU Yongbiao. Study on technology of thin film mutli-layer wiring[J]. Electronics Process Technology, 2016, 37(5): 257–259.

    [22] 田小超,蒋必辞. 随钻伽马测井探管节电降功耗控制方法与系统设计[J]. 煤矿安全,2022,53(1):161–166.

    TIAN Xiaochao, JIANG Bici. Control method and system design for power saving and power consumption reduction of gamma LWD probe tube[J]. Safety in Coal Mines, 2022, 53(1): 161–166.

    [23] 边海龙,彭烈新. 无线随钻测量泥浆脉冲的信号检测及处理技术[J]. 科学技术创新,2021(31):66–68.

    BIAN Hailong, PENG Liexin. Signal detection and processing technology of wireless mud pulse measurement while drilling[J]. Scientific and Technological Innovation, 2021(31): 66–68.

  • 期刊类型引用(1)

    1. 高凯歌,赵超杰,闫柯乐,靳彦欣,樊朝斌,苗智瑜,刘铭刚,葛鹏飞. 气井钻井四通材料冲蚀行为研究及性能优选. 断块油气田. 2025(01): 165-169 . 百度学术

    其他类型引用(0)

图(4)  /  表(2)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  24
  • PDF下载量:  84
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-02-06
  • 网络出版日期:  2024-04-18
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回