Simulation and Analysis of Dynamic Characteristics of Drilling String in Extra-Deep Wells
-
摘要:
随着钻井深度不断增加,钻柱运动所涉及的力学问题变得更加复杂,钻柱动力学特性模拟及分析可为安全优质高效钻井提供支撑。为了探求特深井钻柱的运动特性,将钻柱运动的控制方程采用Newmark法对时间离散后,运用SOR节点迭代法,对每一时间步的钻柱整体构形进行求解,实现了总长超9 000 m的钻柱动力学特性模拟,不仅给出了钻柱4个典型位置的涡动轨迹、涡动速度和横向加速度,还分析了钻柱的粘滑特性。分析结果表明,上部钻柱的涡动及粘滑现象不明显;随着位置下移,出现不规则涡动及不充分粘滑现象;近钻头位置的钻柱会出现较剧烈涡动,也会出现粘滑振动;中性点位置处钻柱的涡动最为剧烈、碰摩严重,可能给钻柱带来安全隐患。研究结果为特深井安全钻井提供了理论依据。
Abstract:As drilling depths increase, the mechanical problems involved in drilling string motion become more complicated. The simulation and analysis of dynamic characteristics of drilling strings could contribute to safe, high-quality, and efficient drilling. In order to explore the motion characteristics of drilling strings in extra-deep wells, the governing equation of drilling string motion was time-discretized using the Newmark method, and the successive over-relaxation (SOR) node iteration method was used to solve the entire configuration of the drilling string at each time step. The dynamic characteristics of the drilling string with a total length of over 9 000 m were simulated. The whirl trajectory, whirl velocity, and lateral acceleration of the drilling string at four typical positions were given. The whirl and stick-slip characteristics of the drilling string were also analyzed. The results demonstrate that the whirl and stick-slip phenomena in the upper part of the drilling string are not obvious and that as the position moves down, irregular whirl and insufficient stick-slip phenomena appear, and the drilling string near the bit may experience violent whirl and stick-slip vibration. The drilling string near the neutral point has the most violent whirls and serious friction, which may bring potential safety risks to the drilling string. The research results can provide theoretical basis for the safe drilling of extra-deep wells.
-
Keywords:
- extra-deep well /
- drill string dynamics /
- SOR node iteration method /
- whirl /
- stick-slip
-
-
-
[1] 张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158. ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158.
[2] 曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):66–73. ZENG Yijin. Novel advancements and development suggestions of cementing technologies for deep and ultra-deep wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66–73.
[3] GB/T 28911—2012 石油天然气钻井工程术语[S]. GB/T 28911—2012 Vocabulary of drilling engineering for the petroleum and natural gas[S].
[4] 邢希金,王涛,刘伟,等. 超深大位移井井壁稳定及储层保护技术与应用[J]. 中国海上油气,2023,35(5):154–163. XING Xijin, WANG Tao, LIU Wei, et al. Research and application of drilling risk prevention and control measures in ultra-deep extended-reach wells[J]. China Offshore Oil and Gas, 2023, 35(5): 154–163.
[5] 王建云,韩涛,赵宽心,等. 塔深 5 井超深层钻井关键技术[J]. 石油钻探技术,2022,50(5):27–33. WANG Jianyun, HAN Tao, ZHAO Kuanxin, et al. Key drilling technologies for the ultra-deep well Tashen 5[J]. Petroleum Drilling Techniques, 2022, 50(5): 27–33.
[6] 陈超峰,刘新宇,李雪彬,等. 准噶尔盆地呼探 1 井高温高压超深井试油测试技术[J]. 石油钻采工艺,2023,45(4):447–454. CHEN Chaofeng, LIU Xinyu, LI Xuebin, et al. High-temperature, high-pressure & ultra-deep well testing technology used in Well Hutan 1 in the Junggar Basin[J]. Oil Drilling & Production Technology, 2023, 45(4): 447–454.
[7] 李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15. LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.
[8] 蔡勋育,刘金连,张宇,等. 中国石化 “十三五” 油气勘探进展与 “十四五” 前景展望[J]. 中国石油勘探,2021,26(1):31–42. CAI Xunyu, LIU Jinlian, ZHANG Yu, et al. Oil and gas exploration progress of Sinopec during the 13th Five-Year Plan period and prospect forecast for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 31–42.
[9] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542. SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
[10] 白彬珍,曾义金,芦鑫,等. 钻头破岩能量与岩石自适应匹配提速技术[J]. 石油钻探技术,2023,51(3):30–36. BAI Binzhen, ZENG Yijin, LU Xin, et al. An ROP improvement technology based on adaptive matching between the rock-breaking energy of bits and rock features[J]. Petroleum Drilling Techniques, 2023, 51(3): 30–36.
[11] GUPTA S K, WAHI P. Global axial–torsional dynamics during rotary drilling[J]. Journal of Sound and Vibration, 2016, 375: 332–352. doi: 10.1016/j.jsv.2016.04.021
[12] 张鹤. 超深井钻柱振动激励机制及动力学特性分析[D]. 上海:上海大学,2019. ZHANG He. Research on the mechanism of vibration excitation and the drillstring dynamics in ultra-deep wells[D]. Shanghai: Shanghai University, 2019.
[13] VIJAYAN K, VLAJIC N, FRISWELL M I. Drillstring-borehole interaction: backward whirl instabilities and axial loading[J]. Meccanica, 2017, 52(11): 2945–2957.
[14] KAPITANIAK M, VAZIRI V, PÁEZ CHÁVEZ J, et al. Experimental studies of forward and backward whirls of drill-string[J]. Mechanical Systems and Signal Processing, 2018, 100: 454–465. doi: 10.1016/j.ymssp.2017.07.014
[15] LIANG Feng, GAO An, YANG Xiaodong. Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans[J]. Applied Mathematical Modelling, 2020, 83: 454–469. doi: 10.1016/j.apm.2020.03.011
[16] GUPTA S K, WAHI P. Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling[J]. Journal of Sound and Vibration, 2018, 412: 457–473. doi: 10.1016/j.jsv.2017.08.044
[17] NANDAKUMAR K, WIERCIGROCH M. Stability analysis of a state dependent delayed, coupled two DOF model of drill-string vibration[J]. Journal of Sound and Vibration, 2013, 332(10): 2575–2592. doi: 10.1016/j.jsv.2012.12.020
[18] 刘巨保,张学鸿,焦洪柱. 小井眼钻柱瞬态动力学研究及应用[J]. 石油学报,2000,21(6):77–82. LIU Jubao, ZHANG Xuehong, JIAO Hongzhu. The dynamic analysis and application of drilling string in slim hole well[J]. Acta Petrolei Sinica, 2000, 21(6): 77–82.
[19] LIAO C M, BALACHANDRAN B, KARKOUB M, et al. Drill-string dynamics: reduced-order models and experimental studies[J]. Journal of Vibration and Acoustics, 2011, 133(4): 041008. doi: 10.1115/1.4003406
[20] 滕学清,狄勤丰,李宁,等. 超深井钻柱粘滑振动特征的测量与分析[J]. 石油钻探技术,2017,45(2):32–39. TENG Xueqing, DI Qinfeng, LI Ning, et al. Measurement and analysis of stick-slip characteristics of drill string in ultra-deep wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32–39.
[21] 李子丰,张永贵,侯绪田,等. 钻柱纵向和扭转振动分析[J]. 工程力学,2004,21(6):203–210. LI Zifeng, ZHANG Yonggui, HOU Xutian, et al. Analysis of longitudinal and torsion vibration of drillstring[J]. Engineering Mechanics, 2004, 21(6): 203–210.
[22] 陈会娟. 井下钻柱振动信号的测量及振动激励源研究[J]. 石油钻探技术,2021,49(5):57–63. CHEN Huijuan. Measurement of the downhole drill string vibration signal and analysis of the vibration excitation sources[J]. Petroleum Drilling Techniques, 2021, 49(5): 57–63.
[23] 况雨春,蒋海军,雷宇航,等. 钻柱系统工作行为三维数值模拟方法[J]. 石油机械,2011,39(11):7–9. KUANG Yuchun, JIANG Haijun, LEI Yuhang, et al. Three dimensional numerical simulation method for drillstring system working behavior[J]. China Petroleum Machinery, 2011, 39(11): 7–9.
[24] 钟文建,李双贵,熊宇楼,等. 超深水平井钴柱动力学研究及强度校核[J]. 西南石油大学学报(自然科学版),2020,42(4):135–143. ZHONG Wenjian, LI Shuanggui, XIONG Yulou, et al. The dynamics characteristics and strengenth check of drilling string in ultra-deep horizontal well[J]. Joural of Southwest Petroleum University(Science & Technology Edition), 2020, 42(4): 135–143.
[25] 祝效华,李柯,李文哲,等. 万米深井上部大尺寸井眼钻柱动力学特性研究[J]. 天然气工业,2024,44(1):49–57. ZHU Xiaohua, LI Ke, LI Wenzhe, et al. Drill string mechanical behaviors of large-size borehole in the upper section of a 10 000 m deep well[J]. Natural Gas Industry, 2024, 44(1): 49–57.
[26] 胡以宝,狄勤丰,姚建林,等. 斜直井眼中钻柱的动力学特性分析[J]. 石油钻采工艺,2009,31(1):14–17. HU Yibao, DI Qinfeng, YAO Jianlin, et al. Analysis of dynamic characteristics of drillstring in straight hole[J]. Oil Drilling & Production Technology, 2009, 31(1): 14–17.
[27] KHULIEF Y A, AL-NASER H. Finite element dynamic analysis of drillstrings[J]. Finite Elements in Analysis and Design, 2005, 41(13): 1270–1288. doi: 10.1016/j.finel.2005.02.003
[28] 王明杰,狄勤丰,王文昌,等. 气体钻井钻柱动态应力特征[J]. 石油学报,2014,35(1):159–165. WANG Mingjie, DI Qinfeng, WANG Wenchang, et al. Dynamic stress analysis of drill string in gas drilling[J]. Acta Petrolei Sinica, 2014, 35(1): 159–165.
[29] 刘延强,吕英民. 环空钻柱结构三维非线性分析[J]. 应用数学和力学,1994,15(3):259–272. doi: 10.1007/BF02451061 LIU Yanqiang, LYU Yingmin. Three-dimensional nonlinear analysis of drill string structure in annulus[J]. Applied Mathematics and Mechanics, 1994, 15(3): 259–272. doi: 10.1007/BF02451061
[30] 唐友刚. 高等结构动力学[M]. 天津:天津大学出版社,2002:187-190. TANG Yougang. Advanced structural dynamics[M]. Tianjin: Tianjin University Press, 2002: 187-190.
[31] CHRISTOFOROU A P, YIGIT A S. Dynamic modelling of rotating drillstrings with borehole interactions[J]. Journal of Sound and Vibration, 1997, 206(2): 243–260. doi: 10.1006/jsvi.1997.1091
[32] 胡枫,于福溪. 超松弛迭代法中松弛因子ω的选取方法[J]. 青海师范大学学报(自然科学版),2006,22(1):42–45. HU Feng, YU Fuxi. The selection method of the relaxation factor ω in successive over-relaxation Iteration algorithm[J]. Journal of Qinghai Normal University(Natural Science Edition), 2006, 22(1): 42–45.
[33] 许国. SOR迭代法收敛的充要条件[J]. 山东建筑工程学院学报,2002,17(4):93–95. XU Guo. The sufficient and necessary conditions of the convergence of the SOR iterative method[J]. Journal of Shandong Institute of Architecture and Engineering, 2002, 17(4): 93–95.
-
期刊类型引用(9)
1. 马涛,张超,王巍,韩成,魏佳. 基于相关系数法的涠西南凹陷潜山地层提速技术. 石化技术. 2024(01): 53-55+58 . 百度学术
2. 李昕楠. 钻井工具在大庆深层提速设计中的应用. 石油和化工设备. 2024(06): 118-120+141 . 百度学术
3. 王姝. 提速工具大庆深部难钻地层中的应用研究. 西部探矿工程. 2020(03): 115-117 . 百度学术
4. 张以明,李晶莹,罗玉财,杨恺,王东明,曹小兵,彭宇,赵伟峰,钟小军,卢昊. 饶阳凹陷中央深潜山带钻井提速配套技术与应用. 中国石油勘探. 2020(06): 87-93 . 百度学术
5. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
6. 侯小锋. 提速工具在大庆深层天然气井中的应用. 西部探矿工程. 2019(08): 33-34+37 . 百度学术
7. 周长所. 渤海深层钻井技术优化与实践. 石油化工应用. 2019(11): 55-59 . 百度学术
8. 周长所,幸雪松,耿亚楠,何英明. 渤中潜山高温凝析气藏钻井关键技术与应用. 重庆科技学院学报(自然科学版). 2019(06): 46-50+73 . 百度学术
9. 和鹏飞. 渤海潜山油藏钻井配套技术的研究与应用. 海洋工程装备与技术. 2017(01): 19-24 . 百度学术
其他类型引用(4)