Study on the Corrosion Resistance of Surface-Modified Soluble Magnesium Alloy for Slip Base
-
摘要:
采用可溶性镁合金制作的节流器卡瓦下座,在井下服役过程中常因其降解速率过快而引起节流器失效,为此对可溶性镁合金表面进行了改性。为了解可溶性镁合金表面改性后的耐腐蚀性能,采用扫描电子显微镜观察了表面改性镁合金腐蚀前后表面的微观结构,采用X射线衍射仪和红外光谱仪分析了表面改性镁合金表腐蚀前后的物相结构,通过电化学试验和浸泡失重试验评价了其在pH值为3.0,7.2和9.0模拟井液中的耐腐蚀性能。与镁合金相比,在不同pH值的模拟井液中,表面改性镁合金的腐蚀电位均正移了约1.1 V,腐蚀电流密度均降低了3个数量级,腐蚀速率均降低了约3 mm/a;与pH值为7.2的模拟井液相比,在pH值为3.0的模拟井液中,表面改性镁合金的电荷转移电阻从9.13×106 Ω·cm2降至1.91×106 Ω·cm2。研究表明,与镁合金相比,表面改性镁合金在pH值为3.0,7.2和9.0模拟井液中的耐腐蚀性能均显著提高,但其在酸性模拟井液中的耐腐蚀性能大程度降低,易降解。对表面改性镁合金卡瓦下座节流器进行了现场试验,试验表明,表面改性镁合金卡瓦下座的承压性能、耐腐蚀性能满足要求,且易于打捞。研究和现场试验结果均表明,表面改性镁合金的耐腐蚀性能满足可溶性卡瓦下座的要求,为其应用于井下节流器提供了依据。
Abstract:The throttling slip base made of soluble magnesium alloy often fails due to its rapid degradation rate during downhole service. Therefore, the surface of soluble magnesium alloy was modified to solve the problem. In order to understand the corrosion resistance of the surface-modified soluble magnesium alloy, the microstructure of surface-modified magnesium alloy before and after corrosion was observed with scanning electron microscopy(SEM). The phase structure of surface-modified magnesium alloy before and after surface corrosion was analyzed by X-ray diffraction (XRD) and infrared spectrometer. The corrosion resistance of the alloy in simulated well fluids at pH 3.0, 7.2, and 9.0 was evaluated by electrochemical and immersion tests. Compared with magnesium alloy, the corrosion potential of surface-modified magnesium alloy was positively shifted by about 1.1 V; the corrosion current density was reduced by three orders of magnitude, and the corrosion rate was reduced by about 3 mm/a in the simulated well fluids at different pH values. Compared with the simulated well fluid at pH 7.2, the charge transfer resistance of the surface-modified magnesium alloy decreased from 9.13×106 Ω·cm2 to 1.91×106 Ω·cm2 in the simulated well fluid at pH 3.0. The results show that compared with magnesium alloy, the corrosion resistance of surface-modified magnesium alloy in simulated well fluids at pH 3.0, 7.2, and 9.0 is significantly improved, while the corrosion resistance of surface-modified magnesium alloy in acidic simulated well fluids is greatly reduced and easy to degrade. The field test of the throttling slip base of the surface-modified magnesium alloy shows that the pressure performance and corrosion resistance of the slip base meet the requirements, and it is easy to be salvaged. The research and field test show that the corrosion resistance of the surface-modified magnesium alloy meets the requirements of soluble slip base, which provides a basis for its application in downhole throttling.
-
Keywords:
- downhole throttles /
- slip base /
- magnesium alloy /
- surface modification /
- microstructure /
- corrosion resistance
-
-
表 1 动电位极化曲线的拟合结果
Table 1 Fitting data of potentiodynamic polarization curve
试片 pH值 Ec/V Jc/(A·cm−2) 镁合金 3.0 −1.480 1.113×10−4 7.2 −1.449 5.020×10−5 9.0 −1.409 4.808×10−5 表面改性镁合金 3.0 −0.293 4.587×10−8 7.2 −0.280 1.798×10−8 9.0 −0.254 1.325×10−8 表 2 镁合金的电化学阻抗谱拟合结果
Table 2 Fitting data of electrochemical impedance spectroscopy of magnesium alloy
pH值 Rs/(Ω·cm2) CPE1/(Ω−1·cm−2·sn) n Rct RL/(Ω·cm2) L/(H·cm2) 3.0 5.4 1.01×10−5 0.933 554.5 3 079 7 029 7.2 5.1 9.71×10−6 0.931 633.5 2 889 10 936 9.0 6.9 7.21×10−6 0.944 1 456.0 4 391 4 427 表 3 表面改性镁合金的电化学阻抗谱拟合结果
Table 3 Fitting data of electrochemical impedance spectroscopy of surface-modified magnesium alloy
pH值 Rs /(Ω·m2) CPE1 /(Ω−1·cm−2·sn1) n1 R1 /(Ω·cm2) CPE2/(Ω−1·cm−2·sn2) n2 R2/(Ω·cm2) CPE3/(Ω−1·cm−2·sn3) n3 Rct/(Ω·cm2) 3.0 96.87 8.09×10−8 0.837 32 211 6.92×10−7 0.583 4.65×105 1.89×10−5 0.817 1.97×106 7.2 164.10 3.20×10−8 0.892 516 620 1.09×10−7 0.585 9.13×106 9.0 170.10 2.58×10−8 0.901 986 490 7.87×10−9 0.607 9.62×106 -
[1] 王发清,曹建洪,曹献平,等. 井下节流技术在塔里木油田的应用评价[J]. 钻采工艺,2017,40(4):106–107. WANG Faqing, CAO Jianhong, CAO Xianping, et al. Application evaluation of downhole throttling technology in Tarim Oilfield[J]. Drilling & Production Technology, 2017, 40(4): 106–107.
[2] 张天鹤. 吉林油田:井下节流分析治冻堵[J]. 石油知识,2017(6):23. ZHANG Tianhe. Jilin Oilfield: downhole throttling analysis for frozen plugging[J]. Petroleum Knowledge, 2017(6): 23.
[3] 王越,刘国良,台鸾,等. 带压处理气井节流器工艺技术研究及应用[J]. 内蒙古石油化工,2023,49(2):83–88. WANG Yue, LIU Guoliang, TAI Luan, et al. Research and application of the throttling process technology in the pressure treated gas well[J]. Inner Mongolia Petrochemical Industry, 2023, 49(2): 83–88.
[4] 张运科,鲍作帆,鹿成亮,等. 利用环形强磁打捞器打捞节流器技术[J]. 油气井测试,2021,30(5):28–31. ZHANG Yunke, BAO Zuofan, LU Chengliang, et al. Technology of fishing choke with annular strong magnetic fishing device[J]. Well Testing, 2021, 30(5): 28–31.
[5] 胡丹,侯治民,滕汶江,等. 新型活动式井下节流器的研制及应用[J]. 石油钻采工艺,2014,36(3):123–125. HU Dan, HOU Zhimin, TENG Wenjiang, et al. Development and application of a new mobile-type downhole choke[J]. Oil Drilling & Production Technology, 2014, 36(3): 123–125.
[6] 肖述琴,于志刚,商永滨,等. 新型卡瓦式井下节流器打捞工具研制及应用[J]. 石油矿场机械,2010,39(12):81–83. XIAO Shuqin, YU Zhigang, SHANG Yongbin, et al. Development and application of fishing tool for slip-type downhole throttle[J]. Oil Field Equipment, 2010, 39(12): 81–83.
[7] 马胜吉. 井下节流器用新型打捞筒的研制与试验[J]. 钻采工艺,2019,42(4):84–86. MA Shengji. Development of a new fishing tool for downhole throttle and tests[J]. Drilling & Production Technology, 2019, 42(4): 84–86.
[8] 王惠,惠徐宁,金伟,等. 锁芯式井下节流器在苏里格气田的应用[J]. 钻采工艺,2018,41(3):69–71. WANG Hui, HUI Xuning, JIN Wei, et al. Applications of lock cylinder type downhole throttle in Sulige Gas Field[J]. Drilling & Production Technology, 2018, 41(3): 69–71.
[9] 魏辽,马兰荣,朱敏涛,等. 大通径桥塞压裂用可溶解球研制及性能评价[J]. 石油钻探技术,2016,44(1):90–94. WEI Liao, MA Lanrong, ZHU Mintao, et al. Development and performance evaluation of dissolvable balls for large borehole bridge plug fracturing[J]. Petroleum Drilling Techniques, 2016, 44(1): 90–94.
[10] 王维,严锐锋,魏克颖,等. 可溶性球座Fe-Mn合金力学及腐蚀性能研究[J]. 石油钻探技术,2022,50(6):133–138. WANG Wei, YAN Ruifeng, WEI Keying, et al. Study on mechanical and corrosion properties of Fe-Mn alloy for soluble ball seats[J]. Petroleum Drilling Techniques, 2022, 50(6): 133–138.
[11] 郝地龙,何霞,王国荣,等. 可溶桥塞整体式卡瓦结构优化设计[J]. 石油钻探技术,2019,47(1):69–75. HAO Dilong, HE Xia, WANG Guorong, et al. Optimization of the structural design of the integral slip of a soluble bridge plug[J]. Petroleum Drilling Techniques, 2019, 47(1): 69–75.
[12] 刘辉,王宇,严俊涛,等. 可溶性桥塞性能测试系统研制与应用[J]. 石油机械,2018,46(10):83–86. LIU Hui, WANG Yu, YAN Juntao, et al. Development and application of dissoluble bridge plug performance test system[J]. China Petroleum Machinery, 2018, 46(10): 83–86.
[13] 王林,张世林,平恩顺,等. 分段压裂用可降解桥塞研制及其性能评价[J]. 科学技术与工程,2017,17(24):228–232. WANG Lin, ZHANG Shilin, PING Enshun, et al. Development and performance evaluation of the degradable bridge plug for staged fracturing[J]. Science Technology and Engineering, 2017, 17(24): 228–232.
[14] 陆建康,管争荣,雒佛庶. 可溶桥塞镶齿卡瓦基座的分析[J]. 机电工程技术,2022,51(3):122–126. LU Jiankang, GUAN Zhengrong, LUO Foshu. The analysis of the soluble bridge plug inserted slip base[J]. Mechanical & Electrical Engineering Technology, 2022, 51(3): 122–126.
[15] 邵瑞,张效华. 均匀化退火对AZ80镁合金组织与力学性能的影响[J]. 热加工工艺,2018,47(18):162–165. SHAO Rui, ZHANG Xiaohua. Effects of homogenizing annealing on microstructure and mechanical properties of AZ80 magnesium alloy[J]. Hot Working Technology, 2018, 47(18): 162–165.
[16] QU Wentao, PAN Boyang, GONG Hao, et al. Electrochemical corrosion and impedance studies of Ti-30Zr-xNb (x = 7, 10, 13 at. %) alloy in simulated downhole environment[J]. Journal of Solid State Electrochemistry, 2023, 27(5): 1155–1164. doi: 10.1007/s10008-023-05430-z
[17] 于晓彤,蔡磊,陈浩,等. 镁合金表面谷氨酸、丙氨酸、天冬氨酸诱导Ca–P涂层耐蚀性能比较[J]. 表面技术,2023,52(4):210–222. YU Xiaotong, CAI Lei, CHEN Hao, et al. Comparison of corrosion resistance of glutamic acid, alanine and aspartic acid-induced Ca-P coatings on magnesium alloy[J]. Surface Technology, 2023, 52(4): 210–222.
[18] ZOU Jinchao, WANG Junpeng, HUANG Zhiquan, et al. Effect of multi-pass rolling on the performance of AZ31 magnesium alloy anode in Mg-Air battery[J]. Journal of the Brazilian Chemical Society, 2022, 33(11): 1332–1341.
[19] 张源,郑瑞宁,刘芸,等. 轧制形变量对Mg-Zn-Sr-Zr-Mn合金组织特征及降解性能的影响[J]. 稀有金属材料与工程,2022,51(12):4646–4657. ZHANG Yuan, ZHENG Ruining, LIU Yun, et al. Effect of rolling shape variation on microstructure characteristics and degradation performance for Mg-Zn-Sr-Zr-Mn alloys[J]. Rare Metal Materials and Engineering, 2022, 51(12): 4646–4657.
[20] 涂亚明,石善志,刘从平,等. CO2驱采出井井下附件材料的腐蚀评价与优选[J]. 腐蚀与防护,2018,39(9):658–662. TU Yaming, SHI Shanzhi, LIU Congping, et al. Material selection and corrosion evaluation of down-hole accessory for CO2 flooding production wells[J]. Corrosion and Protection, 2018, 39(9): 658–662.
[21] GRGUR B N, JUGOVIĆ B Z, GVOZDENOVIĆ M M. Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1133–1143. doi: 10.1016/S1003-6326(22)65861-8
[22] GUO Huixia, MA Ying, WANG Jingsong, et al. Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1786–1793. doi: 10.1016/S1003-6326(11)61388-5
[23] MENG Yuxian, GAO Hong, HU Jiaqi, et al. Effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy[J]. Journal of Materials Research, 2019, 34(6): 1054–1063. doi: 10.1557/jmr.2018.489
[24] 邓希光,王伟强,齐民. AZ31镁合金在Hank’s模拟体液中的腐蚀行为研究[J]. 功能材料,2009,40(11):1884–1887. DENG Xiguang, WANG Weiqiang, QI Min. Study on the corrosion behavior of AZ31 magnesium alloy in Hank’s simulated body fluid[J]. Journal of Functional Materials, 2009, 40(11): 1884–1887.
[25] 苏容. 苏里格气田水处理系统管线腐蚀因素分析[J]. 化学工程师,2022,36(7):80–83. SU Rong. Analysis of pipeline corrosion factors of water treatment system in Sulige Gas Field[J]. Chemical Engineer, 2022, 36(7): 80–83.
-
期刊类型引用(4)
1. 王洪福,刘菊泉,赵明敏,马元元. 非常规抽油杆在我国油田的应用研究. 内江科技. 2021(04): 8+133 . 百度学术
2. 张彦廷,张晧,王林,徐敬玉,綦耀光,黄峥. 深部煤层伴生废热新模式开发及适用性分析. 科学技术与工程. 2021(14): 5957-5962 . 百度学术
3. 王旱祥,吕孝孝,刘延鑫,陈升山,兰文剑. 碳纤维抽油杆采油系统柱塞超冲程产生机理. 石油学报. 2019(12): 1531-1541 . 百度学术
4. 张健,张晧,綦耀光,张芬娜,朱森. 碳纤维连续抽油杆振动分析. 石油矿场机械. 2018(01): 5-10 . 百度学术
其他类型引用(4)