小井眼水平井洗井岩屑清除效率研究

臧传贞, 荆思霖, 路宗羽, 宋先知, 武兴勇

臧传贞,荆思霖,路宗羽,等. 小井眼水平井洗井岩屑清除效率研究[J]. 石油钻探技术,2024,52(3):75-83. DOI: 10.11911/syztjs.2024009
引用本文: 臧传贞,荆思霖,路宗羽,等. 小井眼水平井洗井岩屑清除效率研究[J]. 石油钻探技术,2024,52(3):75-83. DOI: 10.11911/syztjs.2024009
ZANG Chuanzhen, JING Silin, LU Zongyu, et al. Cuttings removal efficiency for slim-hole horizontal well washing [J]. Petroleum Drilling Techniques, 2024, 52(3):75-83. DOI: 10.11911/syztjs.2024009
Citation: ZANG Chuanzhen, JING Silin, LU Zongyu, et al. Cuttings removal efficiency for slim-hole horizontal well washing [J]. Petroleum Drilling Techniques, 2024, 52(3):75-83. DOI: 10.11911/syztjs.2024009

小井眼水平井洗井岩屑清除效率研究

基金项目: 国家自然科学基金国家杰出青年基金项目“油气井流体力学与工程”(编号:52125401)、中国石油重大工程技术现场试验项目“准噶尔南缘和玛湖等重点地区优快钻完井技术集成与试验”(编号:2019F-33)联合资助。
详细信息
    作者简介:

    臧传贞(1981—),男,江苏东海人,2005年毕业于中国石油大学(北京)石油工程专业,高级工程师,主要从事工程技术研究及管理工作。E-mail:zangchz@petrochina.com.cn

    通讯作者:

    宋先知,songxz@cup.edu.cn

  • 中图分类号: TE25

Cuttings Removal Efficiency for Slim-Hole Horizontal Well Washing

  • 摘要:

    为研究小井眼水平井洗井钻柱旋转时的岩屑清除规律,针对玛湖深层三叠系长水平井小井眼洗井工况,进行了相似试验设计,开展了岩屑启动流速和岩屑清除效率的试验研究。试验发现,采用不同排量冲洗岩屑床时,岩屑床呈现稳定运移、沙丘式波浪运移和整体运移等3种运移形态。试验研究了岩屑床稳定运移形态下岩屑粒径、排量和钻柱转速对岩屑启动流速及钻柱转速对岩屑床高度和形成稳定岩屑床所需时间的影响规律,分析了岩屑床整体运移形态下岩屑粒径、排量和岩屑床初始质量对岩屑床清除效率的影响。研究结果表明,岩屑粒径越小所需启动流速越低,钻柱旋转后等效岩屑启动流速降低45.5%,钻柱转速升高会使形成稳定岩屑床所需时间缩短,岩屑清除效率提高;当岩屑床发生整体运移后,较低排量下岩屑床清除速度受岩屑粒径影响较小,高排量下大粒径岩屑床的运移速度快。排量和钻柱转速是提高洗井过程岩屑床清除效率的关键,而现在洗井时钻柱转速较低,可适当提高钻柱转速,以提高洗井效率。

    Abstract:

    In order to investigate the cuttings removal rule of rotary drill pipes in slim-hole horizontal well washing, a similar test design was carried out according to the washing condition of long slim-hole horizontal wells in the deep Triassic system of Mahu Sag, so as to investigate the cuttings start-up velocity and cuttings bed removal efficiency. The test found that the cuttings bed presented three transport modes: stable transport, dune wave-type transport, and overall transport when washed with different flow rates. The effects of particle size of cuttings, flow rate, and rotational speed on start-up velocity of cuttings in stable transport state of cuttings bed were studied through tests, as well as the effect law of the rotational speed of drill pipe on the height of cuttings bed and the time required to form a stable cuttings bed. The effects of particle size of cuttings, flow rate, and initial mass of cuttings bed on the removal efficiency of cuttings bed in overall transport state were investigated. The results show that the smaller particle size of cuttings indicates a smaller start-up velocity, and the equivalent start-up velocity of cuttings will be reduced by 45.5% after the drill pipe rotates. The increase in rotational speed of the drill pipe will shorten the time required to form a stable cuttings bed and improve the removal efficiency of cuttings. When the cuttings bed is in overall transport state, the removal speed of the cuttings bed is less affected by the particle size of the cuttings at low flow rates, and the transport speed of the cuttings bed with large particle size is faster at high flow rates. The flow rate and rotational speed of the drill pipe are the key to improving the removal efficiency of cuttings during well washing process. However, the rotational speed of the drill pipe is currently low during well washing process and can be appropriately increased to improve the well washing efficiency.

  • 图  1   可视化岩屑运移试验系统

    Figure  1.   Visual cuttings transport test system

    图  2   玛湖区块水平段岩屑粒径质量分布

    Figure  2.   Mass distribution of cuttings with varying particle size in horizontal section of Mahu Block

    图  3   水平段洗井岩屑床流动形态

    Figure  3.   Flow patterns of cuttings bed in horizontal section during well washing

    图  4   钻杆静止时环空截面岩屑的分布

    Figure  4.   Cuttings distribution in annular section under stationary drill pipe condition

    图  5   钻柱旋转时环空截面岩屑分布

    Figure  5.   Cuttings distribution in annular section under rotary drill pipe condition

    图  6   水平井洗井岩屑床整体运移示意

    Figure  6.   Overall transport of cuttings bed during horizontal well washing

    图  7   钻杆静止不同粒径岩屑启动流速随排量的变化规律

    Figure  7.   Variation law of start-up velocity of cuttings with different particle sizes with flow rate under stationary drill pipe condition

    图  8   钻柱静止岩屑床高度及流道截面积变化规律

    Figure  8.   Variation law of cuttings bed height and cross-sectional area of flow path under stationary drill pipe condition

    图  9   不同粒径岩屑启动流速和岩屑床高度随钻杆转速的变化规律

    Figure  9.   Variation law of start-up velocity of cuttings with different particle sizes and cuttings bed height with rotational speed of drill pipe

    图  10   临界流速随岩屑粒径变化的规律

    Figure  10.   Variation law of critical velocity with particle size of cuttings

    图  11   岩屑床运移速度的变化规律

    Figure  11.   Variation law of cuttings bed transport speed

    图  12   岩屑床无因次高度和形成稳定岩屑床所需时间随钻柱转速变化的规律

    Figure  12.   Variation of dimensionless height of cuttings bed and time required to form stable cuttings bed with rotational speed of drill pipe

    表  1   玛湖区块4口井水平段钻井参数

    Table  1   Drilling parameters for horizontal section of four wells in Mahu Block

    井号 井段/m 井眼直径/
    mm
    钻杆直径/
    mm
    井眼系数 钻井液密度/
    (kg·L−1)
    表观黏度/
    (mPa·s)
    泵排量/
    (L·s−1
    达131-H井 4 307~4 370 227.0 127.0 3.19 1.55 55 26
    达136-H井 4 569~4 658 227.0 127.0 3.19 1.72 53 30
    MaHW6222井 4 462~4 651 173.0 114.0 2.31 1.62 16
    MaHW6449井 4 125~5 172 173.0 101.6 2.91 1.75~1.77 46~48 17
    下载: 导出CSV

    表  2   试验排量计算结果

    Table  2   Calculation results of experimental flow rate

    井名 试验流速/(m·s−1 试验排量/(L·s−1
    几何相似 动力相似 几何相似 动力相似
    达131-H井 0.939 0.722 9.556 7.350
    达136-H井 1.084 0.834 11.026 8.481
    MaHW6222井 1.195 1.191 12.158 12.119
    MaHW6449井 1.098 0.995 11.167 10.124
    下载: 导出CSV

    表  3   试验参数

    Table  3   Experimental parameters

    流体
    类型
    岩屑
    类型
    排量/
    (L·s−1
    钻杆转速/
    (r·min−1
    初始岩屑床
    质量/kg
    岩屑直径/
    mm
    石英砂 0.97~7.80 0 10 0.5~1.0
    30 15 1.0~2.0
    60 20 2.0~3.0
    120 25 3.0~4.0
    下载: 导出CSV
  • [1] 李振川,姚昌顺,胡开利,等. 水平井井眼清洁技术研究与实践[J]. 新疆石油天然气,2022,18(1):48–53. doi: 10.12388/j.issn.1673-2677.2022.01.008

    LI Zhenchuan, YAO Changshun, HU Kaili, et al. Research and practice of horizontal wellbore cleaning technology[J]. Xinjiang Oil & Gas, 2022, 18(1): 48–53. doi: 10.12388/j.issn.1673-2677.2022.01.008

    [2]

    FORD J T, PEDEN J M, OYENEYIN M B, et al. Experimental investigation of drilled cuttings transport in inclined boreholes[R]. SPE 20421, 1990.

    [3]

    LARSEN T I, PILEHVARI A A, AZAR J J. Development of a new cuttings-transport model for high-angle wellbores including horizontal wells[J]. SPE Drilling & Completion, 1997, 12(2): 129–136.

    [4]

    DUAN Mingqin, MISKA S, YU Mengjiao, et al. Critical conditions for effective sand-sized solids transport in horizontal and high-angle wells[J]. SPE Drilling & Completion, 2009, 24(2): 229–238.

    [5]

    OZBAYOGLU M E, SAASEN A, SORGUN M, et al. Estimating critical velocity to prevent bed development for horizontal-inclined wellbores[R]. SPE 108005, 2007.

    [6] 宋洵成,管志川,陈绍维. 斜井岩屑运移临界环空流速力学模型[J]. 中国石油大学学报(自然科学版),2009,33(1):53-56.

    SONG Xuncheng, GUAN Zhichuan, CHEN Shaowei. Mechanics model of critical annular velocity for cuttings transportation in deviated well[J]. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(1): 53-56.

    [7] 张好林,李根生,黄中伟,等. 水平井冲砂洗井流体流速研究[J]. 科学技术与工程,2014,14(12):177–181.

    ZHANG Haolin, LI Gensheng, HUANG Zhongwei, et al. Research of fluid velocity for sand washing of horizontal well[J]. Science Technology and Engineering, 2014, 14(12): 177–181.

    [8] 郭晓乐,龙芝辉,汪志明. 大位移井岩屑动态运移计算简便方法研究[J]. 石油天然气学报,2011,33(7):108–118.

    GUO Xiaole, LONG Zhihui, WANG Zhiming. Study on simple way for calculating dynamic cuttings transport in extended reach wells[J]. Journal of Oil and Gas Technology, 2011, 33(7): 108–118.

    [9]

    ZHANG Feifei, MISKA S, YU Mengjiao, et al. A unified transient solid-liquid two-phase flow model for cuttings transport modelling part[J]. Journal of Petroleum Science and Engineering, 2018, 166: 146–156. doi: 10.1016/j.petrol.2018.03.027

    [10] 孙晓峰. 大斜度井段岩屑运移实验研究与清洁工具优化设计[D]. 大庆:东北石油大学,2014.

    SUN Xiaofeng. Experimental study on hole cleaning and cleaning tool optimal design in highly-deviated hole [D]. Daqing: Northeast Petroleum University, 2014.

    [11] 孙晓峰,汤捷,袁玉金,等. 水平钻井环空岩屑床表面颗粒临界启动流速的影响因素[J]. 成都理工大学学报(自然科学版),2019,46(2):204-211.

    SUN Xiaofeng, TANG Jie, YUAN Yunjin, et al. Research of critical incipient velocity for particles on cuttings bed in annulus of horizontal wells[J]. Journal of Chengdu University of Technology(Science & Technology Edition) 2019, 46(2): 204-211.

    [12] 汤捷. 水平井岩屑颗粒启动及运移规律研究[D]. 大庆:东北石油大学,2019.

    TANG Jie. Study on initiation and migration of particles on cuttings bed in horizontal wells [D]. Daqing: Northeast Petroleum University, 2019.

    [13] 陈烨,郑有成,曾波,等. 考虑颗粒随机分布特征的水平井环空岩屑起动流速 [J]. 天然气工业,2022,42(10):107-114.

    CHEN Ye, ZHENG Youcheng, ZENG Bo, et al. Incipient flow rate of cuttings in horizontal well annulus considering random distribution characteristics of particles[J]. Natural Gas Industry, 2022, 42(10): 107-114.

    [14] 曲晶瑀. 水平井岩屑运移力学模型及井眼清洁效果评价研究[D]. 大庆:东北石油大学,2022.

    QU Jingyu. Mechanical model of cuttings transport and evaluation of hole cleaning effect in horizontal wells[D]. Daqing: Northeast Petroleum University. 2022.

    [15]

    OZBAYOGLU M E, SAASEN A, SORGUN M, et al. Effect of pipe rotation on hole cleaning for water-based drilling fluids in horizontal and deviated wells[R]. SPE 114965, 2008.

    [16] 张好林,李根生,肖莉,等. 水平井中钻柱旋转对岩屑运移影响规律研究 [J]科学技术与工程,2016,16(2):125-130.

    ZHANG Haolin, LI Gensheng, XIAO Li, et al. Study on the influence of the rotation of drill string on cuttings transportation in horizontal well[J]. Science Technology and Engineering, 2016, 16(2): 125-130.

    [17] 景帅,肖莉,张好林,等. 基于井眼清洁程度与水力学耦合的环空压耗最小化计算方法[J]. 石油钻探技术,2020,48(2):56–62.

    JING Shuai, XIAO Li, ZHANG Haolin, et al. A method for minimizing annulus pressure loss by means of hole cleaning and hydraulics coupling[J]. Petroleum Drilling Techniques, 2020, 48(2): 56–62.

    [18] 胡金帅,张光伟,李峻岭,等. 基于CFD-DEM耦合模型的岩屑运移数值模拟分析[J]. 断块油气田,2022,29(4):561–566.

    HU Jinshuai,ZHANG Guangwei,LI Junling,et al. Numerical simulation of cuttings migration based on CFD-DEM coupling model[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 561–566.

    [19]

    TAGHIPOUR A, LUND B, YTREHUS J D, et al. Experimental study of friction and cutting transport in non-circular borehole geometry[R]. SPE 166790, 2013.

    [20]

    CORREDOR R F E, BIZHANI M, KURU E. Experimental investigation of cuttings bed erosion in horizontal wells using water and drag reducing fluids[J]. Journal of Petroleum Science and Engineering, 2016, 147: 129–42. doi: 10.1016/j.petrol.2016.05.013

    [21] 程仲,李宁,丁翔翔,等. 浅层大位移井井眼清洁效果评价及优化方法[J]. 西安石油大学学报(自然科学版),2022,37(6):60–66.

    CHENG Zhong, LI Ning, DING Xiangxiang. Evaluation and optimization of borehole cleaning effect of shallow extended reach wells[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(6): 60–66.

    [22]

    HUQUE M M, RAHMAN M A, ZENDEHBOUDI S, et al. Experimental and numerical study of cuttings transport in inclined drilling operations[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109394. doi: 10.1016/j.petrol.2021.109394

    [23]

    SONG Xianzhi, XU Zhengming, WANG Mengshu, et al. Experimental study on the wellbore-cleaning efficiency of microhole-horizontal-well drilling[J]. SPE Journal, 2017, 22(4): 1189–1200. doi: 10.2118/185965-PA

    [24] 张绪良. 水平管道液固两相流的相似与模化研究 [J]. 焦作矿业学院学报,1988(1):1-12.

    ZHANG Xueliang. Study on the similarity and modeling of liquid-solid two-phase flow in horizontal pipeline [J]. Journal of Jiaozuo Mining Institute, 1988 (1): 1-12.

    [25] 张春秀. 流体力学实验研究中的相似原理及应用 [J]. 四川电力技术,1996(6):13-18.

    ZHANG Chunxiu. Similarity principle and application in experimental study of fluid mechanics [J]. Sichuan Electric Power Technology, 1996 (6): 13-18.

  • 期刊类型引用(19)

    1. 张光伟,尹福来,程礼林,侯朋朋. 全旋转指向式导向钻井工具结构设计与仿真. 机械设计与制造. 2024(05): 136-140 . 百度学术
    2. 葛勋,郭彤楼,黎茂稳,赵培荣,邓虎成,李王鹏,钟城. 深层页岩储层“工程甜点”评价与优选——以川南永川、丁山地区为例. 石油实验地质. 2023(02): 210-221 . 百度学术
    3. 李文霞,王居贺,王治国,杨卫星,史玉才. 顺北油气田超深高温水平井井眼轨迹控制技术. 石油钻探技术. 2022(04): 18-24 . 本站查看
    4. 谢鑫,徐浩,付成林,金晶,杨小敏. 水平井钻井轨迹控制研究. 精细石油化工进展. 2022(05): 31-35 . 百度学术
    5. 王萍,樊佳勇,韩成福,王亮,屈展,黄海,顾甜利. 苏里格气田区小井眼二开水平井优化设计. 科学技术与工程. 2022(28): 12349-12354 . 百度学术
    6. 陆亚秋,梁榜,王超,刘超,吉靖. 四川盆地涪陵页岩气田江东区块下古生界深层页岩气勘探开发实践与启示. 石油与天然气地质. 2021(01): 241-250 . 百度学术
    7. 张国荣,王俊方,张龙富,陈士奎. 南川常压页岩气田高效开发关键技术进展. 油气藏评价与开发. 2021(03): 365-376 . 百度学术
    8. 李文志. 水平井托压现象原因分析及解决措施. 西部探矿工程. 2021(09): 32-34+37 . 百度学术
    9. 张光伟,乔阳,高嗣土,田帆. 全旋转内置式可控弯接头运动特性. 石油钻采工艺. 2020(01): 45-51 . 百度学术
    10. 宋明阶,彭光宇,胡春阳,来传亚. 涪陵页岩气田加密井轨道优化设计技术. 探矿工程(岩土钻掘工程). 2020(05): 11-16 . 百度学术
    11. 张光生,张红丽,朱秀兰,杨日丽. 水平井井眼轨迹控制技术探讨. 辽宁化工. 2020(08): 1020-1022+1025 . 百度学术
    12. 张光伟,乔阳,田帆,高嗣土,尹福来. 全旋转内置式导向钻井工具动力学分析及仿真. 机械强度. 2020(06): 1417-1423 . 百度学术
    13. 黄德涛. 水平井滑动钻进托压原因以及对策. 石化技术. 2019(03): 225 . 百度学术
    14. 宋保健,孙凯,乐守群,兰凯,明鑫. 涪陵页岩气田钻井提速难点与对策分析. 钻采工艺. 2019(04): 9-12+6 . 百度学术
    15. 黄迪箫笙. 涪陵页岩气田二期钻井提速难点分析及对策. 江汉石油职工大学学报. 2019(05): 11-14 . 百度学术
    16. 李伟,刘文臣,周贤海,倪红坚,于凡,臧艳彬. 涪陵页岩气田三维水平井轨道优化设计方法探讨. 石油钻探技术. 2018(02): 17-23 . 本站查看
    17. 李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 . 本站查看
    18. 杨海平. 涪陵平桥与江东区块页岩气水平井优快钻井技术. 石油钻探技术. 2018(03): 13-19 . 本站查看
    19. 孙永兴,范生林,乔李华. 页岩气水平井卡钻主要原因及预防对策. 天然气工业. 2018(12): 107-113 . 百度学术

    其他类型引用(11)

图(12)  /  表(3)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  37
  • PDF下载量:  62
  • 被引次数: 30
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2024-03-24
  • 网络出版日期:  2024-06-02
  • 刊出日期:  2024-05-24

目录

    /

    返回文章
    返回