Loading [MathJax]/jax/output/SVG/jax.js

基于阵列声波测井的井下多尺度压裂效果评价方法

李宁, 刘鹏, 范华军, 胡江涛, 武宏亮

李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001
引用本文: 李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001
LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging [J]. Petroleum Drilling Techniques,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001
Citation: LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging [J]. Petroleum Drilling Techniques,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001

基于阵列声波测井的井下多尺度压裂效果评价方法

基金项目: 中国石油天然气集团有限公司科学研究与技术开发项目“高精度深探测成像测井系列处理技术研究”(编号:2021DJ4002)、“斯通利波测井探测器及刻度关键技术研究”(编号:2022DJ3908)联合资助。
详细信息
    作者简介:

    李宁(1958—),男,北京人,1982年毕业于华东石油学院矿场地球物理测井专业,1989年获中国石油勘探开发研究院石油地质与勘探专业(测井方向)博士学位,正高级工程师,博士生导师,中国工程院院士,长期从事测井理论方法、应用软件等方面的教学与研究工作。系本刊编委。E-mail:ln@petrochina.com.cn

    通讯作者:

    武宏亮,wuhongliang@petrochina.com.cn

  • 中图分类号: TE357.1+4

Evaluation Method of Downhole Multi-Scale Fracturing Effect Based on Array Acoustic Logging

  • 摘要:

    为有效监测水力压裂效果、提高储层压裂效果评价精度,基于阵列声波测井资料的井下压裂效果评价方法,采用反射斯通利波提取和成像技术定量表征近井筒压裂缝,建立适用于测井观测系统的叠前深度偏移成像算法,以实现远井压裂缝的高精度成像,形成了基于阵列声波测井的井下多尺度压裂效果评价方法,并在中国西部某油田X1水平井成功应用。研究表明,基于阵列声波测井资料评价的压裂缝发育程度与压裂液注入量呈正相关关系,并且压裂缝最为发育层段与地震蚂蚁体属性图中天然裂缝发育位置一致。基于阵列声波测井的井下压裂效果评价方法的提出,对表征井周数十米范围内不同尺度压裂缝的发育情况具有重要意义,对更好地发挥水力压裂技术对能源勘探开发行业的支撑作用具有一定指导意义。

    Abstract:

    In order to effectively monitor the hydraulic fracturing effect and improve the evaluation accuracy of reservoir fracturing, an evaluation method of the downhole fracturing effect based on array acoustic logging data was adopted. The extraction and imaging technologies of reflected Stoneley wave were used to quantitatively characterize near-wellbore fractures, and a pre-stack depth migration imaging algorithm suitable for logging observation systems was proposed, achieving high-precision imaging of fractures in far from wells. In addition, an evaluation method of multi-scale fracturing effect based on array acoustic logging was developed and applied in horizontal well X1 in an oilfield in western China. The results show that the development degree of fractures evaluated based on array acoustic logging data is positively correlated with the injection amount of fracturing fluid, and the most developed zone of fractures is consistent with the development location of natural fractures in the seismic ant attribute map. The evaluation method of the downhole fracturing effect based on array acoustic logging is of great significance to characterize the development of fractures of different scales within tens of meters around the well, and it has certain guiding significance to better play the supporting role of hydraulic fracturing technologies for energy exploration and development industry.

  • 海上油田常采用水平井开发,水平井通过扩大油层泄油面积来提高油井产量及油田开发经济效益,然而高含水和出砂问题严重影响着水平油井持续高效稳定生产[14]。当前,渤海BN油田的水平井多采用防砂筛管完井,但储层非均质性极强,渗透率变异系数达到0.855,油井生产过程中地层极易出水或注入水沿优势通道突进至井筒,使油井进入高含水阶段而低效生产[512]。同时,由于储层非均质性强,优势通道产液量高,在近井地带容易形成高速携砂流,导致筛管金属网被冲蚀破损而造成油井出砂,使油井寿命缩短,影响开发效果。另外,油井高含水低效生产时,为了保证经济日产油量而提高产液量,又进一步加剧筛管冲蚀出砂风险,出砂后油井被迫限制产液量,且长期出砂还会出现砂埋井筒导致躺井。针对特高孔渗疏松砂岩油藏水平井的控水防砂,现阶段国内外多采用金属筛管砾石充填进行防砂、金属筛管内部下入控水管柱进行控水[714]。BN油田也采用金属筛管砾石充填、金属筛管内下控水管柱的方法进行特高孔渗疏松砂岩储层的控水防砂,但生产过程中砾石充填并不能完全起到防砂作用,部分生产井仍存在筛管冲蚀的问题。同时,由于外环空窜流及内管柱限液的问题,控水管柱的控水效果也远低于预期。此外,该控水防砂工艺还存在工序复杂、耗时长等问题。连续封隔体控水完井技术在水平井控水方面存在明显优势[1529],为此,笔者在该技术的基础上,通过优选连续封隔体颗粒粒径,优化设计ICD筛管控流强度及优化ICD筛管配置,形成了渤海特高孔渗储层控水防砂一体化完井技术。该技术在BN油田的3口井进行了试验,与邻井相比,防砂有效期与无水采油期大幅增长,表明该技术可以满足渤海特高孔渗储层控水和防砂的双重需求。

    连续封隔体一体化完井管柱主要由ICD(inflow control device)筛管及连续封隔体颗粒组成,如图1所示。ICD筛管是将ICD集成到筛管上而形成的一种特殊筛管,同时具备控水和防砂的功能。流体通过ICD筛管时产生一定的附加阻力,其附加阻力与流体流速呈正相关关系。在内外压差一定的情况下,ICD筛管的流量为定值;内外压差越高,其与普通筛管流量的比值越小,以此达到限制局部超高产液量的目的。同时,筛管过滤段内置的金属防砂网可起到防砂的作用。

    图  1  连续封隔体一体化完井管柱结构示意
    Figure  1.  Pipe string structure of integrated completion with continuous packer

    连续封隔体颗粒是一种真实密度仅有1.05 g/cm3的圆球状颗粒,具有可携带性强、耐温耐压性能好和物理化学性质稳定等特点。施工过程中连续封隔体颗粒将井壁与ICD筛管形成的环空完全填满,起到环空轴向防水窜、径向过滤防砂的作用。

    连续封隔体颗粒与ICD筛管相结合均衡调配不同生产井段的产液速度,以缩小单位长度生产井段产液量的差距(见图2)。未采取控水措施的裸眼井,井筒产液剖面的分布仅取决于地下油水的流度比;对于使用连续封隔体一体化完井管柱的井,环空中的连续封隔体颗粒将各生产井段进行有效封隔,生产井段的产液能力越强,受到ICD筛管的限制越大。因此,在相同地层条件和总产液量的条件下,控水井的生产压差高于未控水井的生产压差。对于高产液量生产井段,95%的生产压差被ICD筛管消耗,仅有5%作用在地层上[20];而低产量生产井段仅有5%的生产压差被ICD控水筛管消耗,剩下95%的生产压差都作用在地层上[20]。分析2种完井条件下的油井产液剖面发现:控水井各生产井段间的最高入井流量与最低入井流量的级差被缩小,从而实现产液剖面均衡。由于生产井的出水井段与高产液量井段的位置基本重合,最终控水井实现降水增油的目的。

    图  2  未控水井和ICD+连续封隔体控水井的产液剖面示意
    Figure  2.  Fluid production profile of uncontrolled wells and wells with ICD + continuous packer

    连续封隔体的控水功能主要通过控制2个方向的流动来实现:径向上,利用ICD筛管给高产液量井段(高渗井段、出水井段)提供一个较大的回压,减少高产液量井段对应筛管(ICD阀)的径向流入;轴向上,通过充填连续封隔体颗粒将环空管流转化为渗流,使生产井段被划分独立的生产单元,高产液量井段的流体被径向限流后,在井壁和筛管环空内产生沿轴向向两侧窜流的趋势,此时堆积紧实的连续封隔体颗粒起到限制轴向窜流的作用。通过控制径向和轴向2个方向的流量,最终实现均衡产液的目的,在限制高产液量井段产出的同时,提高低产液量井段(低渗井段、出油井段)的产出。

    图1所示,在裸眼水平井中,连续封隔体的防砂机理与理想状态下的砾石充填类似,利用筛管内金属过滤网及环空颗粒层实现防砂。对于原防砂管柱破损导致防砂失效的井,可以在井壁与原防砂管柱的外环空以及原防砂管柱与新防砂管柱的内环空中充填连续封隔体颗粒,使内外环空充满连续封隔体颗粒,从而实现对原防砂管柱的修补及防砂功能的加强,最终限制地层出砂(见图3图4)。同时,ICD筛管均衡了全井段的产液量,防止了高产液量冲蚀造成的出砂。

    图  3  原筛管冲蚀后的井筒截面
    Figure  3.  Wellbore section after erosion of original screen tube
    图  4  连续封隔体作业后的井筒截面
    Figure  4.  Wellbore section after continuous packer operation

    连续封隔体一体化完井管柱具有双层防砂,ICD筛管上的过滤套具有防砂功能,与优质筛管的防砂机理[3032]相同,同时连续封隔体颗粒环也具有与砾石充填环相同的防砂效果。连续封隔体为超轻颗粒,如以海水(密度1.03 g/cm3)为充填液,其与充填液的密度差为砾石充填的1.5%[26]。与充填液间超低的密度差使连续封隔体颗粒极易携带,且在充填过程中沉降速度慢、不易在水平段跟端及中段形成砂桥,能够保证全井段的完全充填。充填初始阶段,受ICD筛管回流量的限制,连续封隔体颗粒随高速充填液直达趾端,并在此过程中沉降铺置,完成α充填阶段;再在环空顶部从趾段不断向跟端方向回填,被连续封隔体颗粒彻底填埋的ICD筛管不再回流,但连续封隔体颗粒回填界面与被填埋的ICD筛管间存在压力梯度,形成渗流挤压,在冲击堆积及渗流挤压的双重作用下,连续封隔体颗粒得以均匀、紧实、无亏空的完全充填,当井口回流量降至临界回流量时,β充填阶段结束。连续封隔体颗粒的完全充填提高了颗粒充填过滤防砂技术的整体防砂效果。同时连续封隔体颗粒环还具有支撑井壁,避免泥岩段井壁垮塌的作用,还可以起到过滤作用,使泥岩段泥质颗粒运移到受限制,避免影响出油井段的生产[26]

    高含水、出砂水平井需要进行连续封隔体一体化完井设计,满足其控水防砂双重需求。连续封隔体一体化完井设计包括防砂参数设计(封隔体颗粒粒径及筛网过滤精度)、ICD筛管控流强度设计、ICD筛管配置优化和充填参数设计。多参数相结合进行设计,形成控水防砂一体化设计方案,达到控水防砂的目的。

    设计防砂参数时需要根据地层砂的粒度分布情况来设计防砂工具的精度,包括防砂管柱和连续封隔体颗粒的粒径。渤海BN油田采用水平井开发特高孔渗油藏,开发层系单一,地层砂粒径沿水平段的变化幅度小,因此连续封隔体防砂一般采取均匀防砂,也就是所有筛管防砂网的防砂精度相同,全井充填连续封隔体颗粒的粒径相同。优质防砂筛管的缝隙尺寸应能挡住最小粒径的充填砾石,根据完井手册的颗粒充填参数可知,筛管过滤精度为砂粒最小粒径的1/2~2/3,可达到阻挡砂粒流入井筒的目的,因此能够进入连续封隔体颗粒孔喉的砂粒完全可以通过筛管过滤网,且地层砂所经连续封隔体颗粒充填层的距离极短仅有2 cm左右,在高速地层流体携带下,砂粒不会在连续封隔体孔喉内形成堵塞[33]。连续封隔体颗粒粒径与地层砂中值粒径之比太小时,防砂效果好,但渗透率较低;比值较大时,渗透率较高,但防砂效果差。由Saucier计算公式[34]可知,充填颗粒的中值粒径为出砂井地层砂中值粒径的5~6倍时,既能获得较好的防砂效果,又能获得理想的渗透率。

    连续封隔体控水防砂一体化完井通过ICD筛管控制径向上的入井流量,以达到均衡产液剖面的目的,ICD筛管控流强度需要同时满足油井前期控水及后期提液的需求,因此ICD筛管压降与整体压降之比应在一个合理范围。油井生产后期,井筒全线见水导致各生产井段含水率相近,各生产井段内流度比的差异大幅缩小,从而使各生产井段的ICD筛管压降相近。因此,采用将油井产液量平均到每根ICD筛管,计算平均流量下ICD筛管的压降。ICD筛管压降加上地层压降要小于设计的最大生产压差。

    连续封隔体控水防砂一体化完井的生产压差(Δpsum)为:

    Δpsum=ΔpICD+Δpres (1)

    式中:Δpsum为生产压差,MPa;Δpres为地层压降,MPa;ΔpICD为ICD筛管压降,MPa。

    设油层能提供的最大生产压差(Δpsum_max)与最大产液量下储层实际消耗压降(Δpres_max)之差为最大ICD筛管压降(ΔpICD_max),此时平均流量下的ICD筛管压降应小于ICD筛管最大压降。

    ΔpICD_max=Δpsum_maxΔpres_max (2)

    连续封隔体控水防砂一体化完井通过均衡产液剖面实现控水增油。水平井生产井段采用相同控流强度的ICD筛管,可以起到一定程度的均衡产液剖面的作用,但也可以通过分析出水风险高点,优化配置ICD筛管,加强连续封隔体一体化完井均衡产液剖面的作用。在高产液量井段应用控流强度较大的ICD筛管,可以延缓油水前缘推进速度,延长无水采油期;在低产液量井段应用控流强度较弱的ICD筛管,可以提高出油井段的有效生产压差(即储层产液压差),增大出油井段的产液贡献。

    ICD筛管配置优化主要以出水风险分析为基础,通过与地质油藏研究相结合,在储层非均质性、储层连通性、渗流场等认识基础上,结合周边井生产制度、出水规律认识、井眼与边底水距离、与老井位置关系等,初步进行ICD筛管配置;根据不同生产井段孔隙度、渗透率和含油(水)饱和度,优化ICD筛管配置。

    BN油田的BN-A36H1井、BN-A29H1井和BN-D4H1井进行了连续封隔体控水防砂一体化完井技术试验。3口井应用连续封隔体控水防砂一体化完井技术投产后,初期实际产油量均远高于配产量(见表1);与邻井投产即含水率高相比,单井无水采油期平均延长了187 d,单井平均日增产油量53.96 m3;投产后3口井均正常生产,其中BN-D4H1井是投产最早的井,井口连续889 d未检测到出砂,BN-A36H1井投产至今井口连续503 d未检测到出砂,BN-A29H1井的井口连续476 d未检测到出砂,3口井均防砂成功。目前,这3口井生产动态平稳,未发生筛管破损等生产事故。下面以BN-A36H1井为例详细介绍连续封隔体控水防砂一体化完井的设计过程。

    表  1  BN油田连续封隔体控水防砂井实际生产与设计对比
    Table  1.  Comparison of actual production and design of wells with continuous packer application in BN Oilfield
    井号 配产量/
    (m3·d−1
    初期实际产油量/
    (m3·d−1
    预期初期
    含水率,%
    实际初期
    含水率,%
    BN-A29H1 50 160 50 4
    BN-A36H1 35 175 81 2
    BN-D4H1 40 140 75 9
    下载: 导出CSV 
    | 显示表格

    BN-A36H1井开采NmⅡ油组的1S-1-1232砂体,其为BN-A36H井的同层侧钻井,BN-A36H井的水平段长150 m,BN-A36H1井的水平段长325 m。BN-A36H1井与BN-A36H井重合段的距离小于8 m。BN-A36H井侧钻前日产液量176 m3,日产油量6.0 m3,含水率96.6%,累计产油量17.70×104 m3,区域采出程度32.3%,井附近储量动用程度较大,剩余油含油饱和度不足40%。考虑BN-A36H井侧钻前含水率已经很高,2口井的重合段可能水淹,为BN-A36H1井潜在的出水风险点。

    BN-A36H1井所开采储层砂的d50为110.92 μm,均质系数为8.31,属于不均质地层砂。由此,选择粒径425~850 μm(20/40目)连续封隔体颗粒,结合前期老井防砂精度,对应筛管挡砂精度选择120 μm。

    BN-A36H1井设计最高产液量为150 m3/d,最大生产压差为7.2 MPa。该井水平段长度为315 m,每根ICD筛管10 m,总共下入32根ICD筛管,每根ICD筛管上的最高产液量平均为4.7 m3/d。根据单位长度采液指数,计算最高产液量下BN-A36H1井地层内压降为1.5 MPa,则ICD筛管压降上限为5.7 MPa。根据每根ICD筛管上的最高产液量(4.7 m3/d)计算不同型号ICD筛管所产生的压降,选择压降小于5.7 MPa的ICD筛管。

    侧钻前分析认为BN-A36H井并非全井段水淹,仅在某个或某些高渗透段见水,但在老井眼窜流的影响下,BN-A36H井的局部水淹被放大至全井段水淹。生产过程中,高产液量井段因受到ICD筛管的控流作用,其产出液无法全部进入ICD筛管,从而在ICD筛管与井壁的环空处形成较大的回压,导致流体通过BN-A36H井水泥塞在原井眼内部轴向窜流,向新井眼平行推进,影响同层侧钻井BN-A36H1井的生产。因受BN-A36H井的影响,BN-A36H1井与BN-A36H井距离最近的井段成为出水的风险点。BN-A36H1井核磁共振测井结果显示,全井段解释为油层,且自然伽马值未显示泥质含量明显高的生产井段,BN-A36H1井与BN-A36H井重合段(1 980~2 130 m井段)的电阻率较低(见图5),表明其含水饱和度较高,剩余潜力较小,且距离跟端越近,其电阻率越低,含水饱和度越高,可能已经水淹。

    图  5  BN-A36H1井的测井曲线
    Figure  5.  Well logging curve of Well BN-A36H1

    根据钻前分析和钻后测井解释结果,确定BN-A36H1井与BN-A36H井重合段的跟端(1 980~2 080 m井段)采用盲管封堵(见图6),防止该井段出水;重合段尾部电阻率稍高的井段(2 080~2130 m井段)采用强控流 ICD 筛管,降低产水的同时动用剩余油;非重合段(2 130~2 305 m井段)采用弱控流 ICD 筛管,增强该井段对整体产液的贡献。

    图  6  BN-A36H1井的ICD筛管配置
    Figure  6.  Screen tube design of Well BN-A36H1

    1)防砂控水一体化完井技术是基于连续封隔体控水技术升级而来,通过对该技术涉及到的防砂精度、ICD筛管控流强度及ICD筛管配置分布等进行系统设计,形成了满足BN油田生产井防砂控水双重需求的防砂控水一体化完井设计方法。

    2)3口井的现场试验表明,防砂控水一体化完井技术能满足BN油田特高孔渗储层控水防砂双重需求,完井后投产初期产油量远高于配产量,投产初期的含水率不到10%,单井无水采油期平均延长了187 d,3口井均持续生产470 d多井口未检测到出砂,有1口井持续生产889 d井口未检测到出砂。

    4)目前该技术已初步实现控水防砂功能且效果显著,建议下一步进行提高、完善防砂和控水设计理论的研究,以及在水平段不同位置实现差异化防砂的相关研究。

  • 图  1   近井处压裂缝成像的流程

    Figure  1.   Imaging process of near-wellbore fractures

    图  2   X1井斯通利波压裂缝成像处理结果

    Figure  2.   Imaging results of Stoneley wave for fractures in Well X1

    图  3   X1井远井筒压裂裂缝远探测偏移成像结果

    Figure  3.   Migration imaging results by remote detection of fractures far from wellbore of horizontal well X1

    图  4   X1井远井裂缝定量评价结果

    Figure  4.   Quantitative evaluation of fractures far from wellbore of horizontal well X1

    图  5   过钻头阵列声波测井仪示意

    Figure  5.   Array acoustic logger through the bit

    图  6   X1井基于声波测井资料的水力压裂缝评价效果

    Figure  6.   Hydraulic fracture evaluation effect of horizontal well X1 based on acoustic logging data

    图  7   X1井1-19压裂段的压裂液注入量

    Figure  7.   Fracturing fluid injection amount in fracturing stages 1–19 of horizontal well X1

    图  8   穿过X1井的地震蚂蚁属性图

    Figure  8.   Seismic ant attribute map across horizontal well X1

    表  1   基于声波测井资料的水力压裂评价标准

    Table  1   Hydraulic fracturing evaluation criteria based on acoustic logging data

    近井筒压裂缝发育情况远井筒压裂缝发育情况压裂评价标准
    发育发育
    发育不发育
    不发育发育
    不发育不发育
    下载: 导出CSV
  • [1] 莫里斯·杜索尔特,约翰·麦克力兰,蒋恕. 大规模多级水力压裂技术在页岩油气藏开发中的应用[J]. 石油钻探技术,2011,39(3):6–16. doi: 10.3969/j.issn.1001-0890.2011.03.002

    DUSSEAULT M, MCLENNAN J, JIANG Shu. Massive multi-stage hydraulic fracturing for oil and gas recovery from low mobility reservoirs in China[J]. Petroleum Drilling Techniques, 2011, 39(3): 6–16. doi: 10.3969/j.issn.1001-0890.2011.03.002

    [2]

    SCHULTZ R, ATKINSON G, EATON D W, et al. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay Play[J]. Science, 2018, 359(6373): 304–308. doi: 10.1126/science.aao0159

    [3]

    ATKINSON G M, EATON D W, IGONIN N. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth & Environment, 2020, 1(5): 264–277.

    [4]

    THOMAS M, PARTRIDGE T, HARTHORN B H, et al. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK[J]. Nature Energy, 2017, 2(5): 17054. doi: 10.1038/nenergy.2017.54

    [5]

    CHENG Jiulong, SONG Guangdong, SUN Xiaoyun, et al. Research developments and prospects on microseismic source location in mines[J]. Engineering, 2018, 4(5): 653–660. doi: 10.1016/j.eng.2018.08.004

    [6]

    DONG Longjun, HU Qingchun, TONG Xiaojie, et al. Velocity-free MS/AE source location method for three-dimensional hole-containing structures[J]. Engineering, 2020, 6(7): 827–834. doi: 10.1016/j.eng.2019.12.016

    [7]

    JIANG Ruochen, DAI Feng, LIU Yi, et al. Fast marching method for microseismic source location in cavern-containing rockmass: performance analysis and engineering application[J]. Engineering, 2021, 7(7): 1023–1034. doi: 10.1016/j.eng.2020.10.019

    [8] 邹信波,刘帅,江任开,等. 水动力压裂技术在海上油田应用的可行性分析[J]. 钻采工艺,2021,44(3):60–63.

    ZOU Xinbo, LIU Shuai, JIANG Renkai, et al. Feasibility analysis of application of hydrodynamic fracturing technology in offshore oilfields[J]. Drilling & Production Technology, 2021, 44(3): 60–63.

    [9] 张国栋,庄春喜,黑创. 东海西湖凹陷探井储层压后缝高评价新方法[J]. 石油钻探技术,2016,44(5):122–126.

    ZHANG Guodong, ZHUANG Chunxi, HEI Chuang. New techniques for fracture height determination in exploration wells drilled in the Xihu Sag, East China Sea[J]. Petroleum Drilling Techniques, 2016, 44(5): 122–126.

    [10] 仝少凯,高德利. 水力压力波动注入压裂增产工艺的力学原理[J]. 石油钻采工艺,2018,40(2):265–274.

    TONG Shaokai, GAO Deli. Mechanical principles of hydraulic pressure fluctuation injection based on fracturing technology[J]. Oil Drilling & Production Technology, 2018, 40(2): 265–274.

    [11] 杨秀夫,刘希圣,陈勉,等. 国内外水力压裂技术现状及发展趋势[J]. 钻采工艺,1998,21(4):21–25.

    YANG Xiufu, LIU Xisheng, CHEN Mian, et al. Status quo of hydraulic fracturing technique and its developing trend at home and abroad[J]. Drilling & Production Technology, 1998, 21(4): 21–25.

    [12] 赵博雄,王忠仁,刘瑞,等. 国内外微地震监测技术综述[J]. 地球物理学进展,2014,29(4):1882–1888.

    ZHAO Boxiong, WANG Zhongren, LIU Rui, et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics, 2014, 29(4): 1882–1888.

    [13] 于辉,张海江. 水力压裂微地震监测稳定共振频率信号的解释[J]. 物探化探计算技术,2017,39(1):90–95. doi: 10.3969/j.issn.1001-1749.2017.01.13

    YU Hui, ZHANG Haijiang. Interpretation of stable resonance frequency signals observed from microseismic monitoring during hydraulic fracturing[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1): 90–95. doi: 10.3969/j.issn.1001-1749.2017.01.13

    [14] 张东晓,杨婷云. 页岩气开发综述[J]. 石油学报,2013,34(4):792–801. doi: 10.7623/syxb201304023

    ZHANG Dongxiao, YANG Tingyun. An overview of shale-gas production[J]. Acta Petrolei Sinica, 2013, 34(4): 792–801. doi: 10.7623/syxb201304023

    [15] 张驰,周彤,肖佳林,等. 涪陵页岩气田加密井压裂技术的实践与认识[J]. 断块油气田,2022,29(6):775–779.

    ZHANG Chi, ZHOU Tong, XIAO Jialin, et al. Practice and knowledge of fracturing technology for infill wells in Fuling Shale Gas Field[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 775–779.

    [16] 刘博,苗红波,徐刚,等. 微地震同步压裂监测技术研究与应用[J]. 钻采工艺,2017,40(4):53–55. doi: 10.3969/J.ISSN.1006-768X.2017.04.17

    LIU Bo, MIAO Hongbo, XU Gang, et al. Study on microseismic monitoring of synchronous fracturing and its applications[J]. Drilling & Production Technology, 2017, 40(4): 53–55. doi: 10.3969/J.ISSN.1006-768X.2017.04.17

    [17] 牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022,50(6):21–27. doi: 10.11911/syztjs.2022111

    NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21–27. doi: 10.11911/syztjs.2022111

    [18] 段银鹿,李倩,姚韦萍. 水力压裂微地震裂缝监测技术及其应用[J]. 断块油气田,2013,20(5):644–648.

    DUAN Yinlu, LI Qian, YAO Weiping. Microseismic fracture monitoring technology of hydraulic fracturing and its application[J]. Fault-Block Oil & Gas Field, 2013, 20(5): 644–648.

    [19] 朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验[J]. 石油钻探技术,2022,50(6):35–40.

    ZHU Zuyang. Numerical simulation and test of velocity imaging for remote detection acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35–40.

    [20] 孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022,50(4):114–120. doi: 10.11911/syztjs.2022089

    SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114–120. doi: 10.11911/syztjs.2022089

    [21] 刘西恩,孙志峰,仇傲,等. 随钻四极子声波测井仪的设计及试验[J]. 石油钻探技术,2022,50(3):125–131. doi: 10.11911/syztjs.2022058

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Design and experiment for a quadrupole acoustic LWD tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125–131. doi: 10.11911/syztjs.2022058

    [22] 刘美成. 致密储层测井评价技术及发展方向[J]. 特种油气藏,2022,29(4):12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002

    LIU Meicheng. Logging evaluation technology and further development of tight reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002

    [23] 陈斌,蔺敬旗,李兆春,等. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田,2021,28(4):550–554.

    CHEN Bin, LIN Jingqi, LI Zhaochun, et al. Application of array acoustic logging in shale oil volume fracturing effect evaluation[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 550–554.

    [24] 黑创,罗明璋,邹骁. 基于井孔散射波能量的水力压裂效果评价方法[J]. 长江大学学报(自然科学版),2021,18(3):14–20.

    HEI Chuang, LUO Mingzhang, ZOU Xiao. Evaluation methods of the hydraulic fracturing effect based on the energy of borehole scattered wave[J]. Journal of Yangtze University(Natural Science Edition), 2021, 18(3): 14–20.

    [25] 祁晓,张璋,李东,等. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法[J]. 石油钻探技术,2023,51(6):128–134.

    QI Xiao, ZHANG Zhang, LI Dong, et al. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128–134.

    [26]

    LI Ning, WANG Kewen, WU Hongliang, et al. Shock-induced Stoneley waves in carbonate rock samples[J]. Geophysics, 2019, 84(5): D209–D216. doi: 10.1190/geo2018-0399.1

    [27]

    LI Ning, WANG Kewen, LIU Peng, et al. Experimental study on attenuation of Stoneley wave under different fracture factors[J]. Petroleum Exploration and Development, 2021, 48(2): 299–307. doi: 10.1016/S1876-3804(21)60024-1

    [28] 夏宏泉,胡慧,杨林,等. 基于声波变密度测井信息识别水平井压裂裂缝的方法[J]. 石油钻探技术,2017,45(5):113–117.

    XIA Hongquan, HU Hui, YANG Lin, et al. Method about improving accuracy of fracture fluid friction pressure[J]. Petroleum Drilling Techniques, 2017, 45(5): 113–117.

    [29]

    FAN Huajun, LIU Peng, ZHAO Hao, et al. Forward modeling of P- and S-waves response of fractures intersected with horizontal wells in tight reservoirs[J]. Frontiers in Earth Science, 2023, 11: 1149171. doi: 10.3389/feart.2023.1149171

    [30]

    LIU Peng, WU Hongliang, LI Yusheng, et al. Hydraulic fracturing evaluation utilizing single-well S-wave imaging: improved processing method and field examples[C]//SPWLA 61st Annual Logging Symposium 2020. Houston: Society of Petrophysicists and Well-Log Analysts, 2020: J5TNW4WI.

    [31] 李宁,冯周,武宏亮,等. 中国陆相页岩油测井评价技术方法新进展[J]. 石油学报,2023,44(1):28–44. doi: 10.7623/syxb202301003

    LI Ning, FENG Zhou, WU Hongliang, et al. New advances in methods and technologies for well logging evaluation of continental shale oil in China[J]. Acta Petrolei Sinica, 2023, 44(1): 28–44. doi: 10.7623/syxb202301003

  • 期刊类型引用(20)

    1. 牛彩云,张磊,魏韦,张磊,郑刚,邓泽鲲,李明江. 鄂尔多斯页岩油水平井闷排采设计与实践——以陇东地区庆城油田长7段为例. 石油地质与工程. 2025(01): 7-12 . 百度学术
    2. 岳渊洲,黄战卫,刘环宇,田伟东. 庆城油田页岩油水平井分段酸化解堵工艺. 石油地质与工程. 2025(01): 21-25+33 . 百度学术
    3. 殷俊荣,陈宇琪,张百川,王金冉,鲜成钢,贾文峰. 纳米乳液:性能、制备及在非常规油气开发中的应用进展. 应用化工. 2024(02): 362-367 . 百度学术
    4. 蒋廷学,沈子齐,王良军,齐自立,肖博,秦秋萍,范喜群,王勇,曲海. 考虑渗吸效应的页岩油井体积压裂用液强度优化方法——以南襄盆地泌阳凹陷X-1井为例. 石油勘探与开发. 2024(03): 588-596 . 百度学术
    5. JIANG Tingxue,SHEN Ziqi,WANG Liangjun,QI Zili,XIAO Bo,QIN Qiuping,FAN Xiqun,WANG Yong,QU Hai. Optimization method of fracturing fluid volume intensity for SRV fracturing technique in shale oil reservoir based on forced imbibition: A case study of well X-1 in Biyang Sag of Nanxiang Basin, China. Petroleum Exploration and Development. 2024(03): 674-683 . 必应学术
    6. 刘艳祥,吕文雅,曾联波,李睿琦,董少群,王兆生,李彦录,王磊飞,冀春秋. 鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模. 地学前缘. 2024(05): 103-116 . 百度学术
    7. 段宝江,王一超,钱继贺,蔡振华,李奇,宣涛. 海上低渗薄互层反向压驱压裂工艺技术研究及应用. 复杂油气藏. 2024(03): 362-366 . 百度学术
    8. 何延龙,黄海,唐梅荣,倪军,李华周,TAYFUN Babadagli,张轩诚. 体积压裂缝端压差对页岩储层排驱效果的影响机制. 中国石油大学学报(自然科学版). 2024(06): 114-122 . 百度学术
    9. 岳渊洲,马红星,刘环宇,钟建伟,付继有,田伟东,王一航,刘银娟. 页岩油结垢堵塞水平井解堵阻垢有机酸体系. 石油钻采工艺. 2024(03): 359-367 . 百度学术
    10. 蔚远江,王红岩,刘德勋,赵群,李晓波,武瑾,夏遵义. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系. 地球科学. 2023(01): 191-205 . 百度学术
    11. 雷启鸿,何右安,郭芪恒,党永潮,黄天镜,刘长春. 鄂尔多斯盆地页岩油水平井开发关键科技问题. 天然气地球科学. 2023(06): 939-949 . 百度学术
    12. 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨. 石油钻探技术. 2023(04): 184-191 . 本站查看
    13. 蒋廷学,肖博,沈子齐,刘学鹏,仲冠宇. 陆相页岩油气水平井穿层体积压裂技术. 石油钻探技术. 2023(05): 8-14+179 . 本站查看
    14. 赵振峰,王文雄,徐晓晨,叶亮,李鸣. 鄂尔多斯盆地海相深层页岩气压裂技术. 石油钻探技术. 2023(05): 23-32 . 本站查看
    15. 张矿生,齐银,薛小佳,陶亮,陈文斌,武安安. 鄂尔多斯盆地页岩油水平井CO_2区域增能体积压裂技术. 石油钻探技术. 2023(05): 15-22 . 本站查看
    16. 慕立俊,拜杰,齐银,薛小佳. 庆城夹层型页岩油地质工程一体化压裂技术. 石油钻探技术. 2023(05): 33-41 . 本站查看
    17. 郭建春,任文希,曾凡辉,罗扬,李宇麟,杜肖泱. 非常规油气井压裂参数智能优化研究进展与发展展望. 石油钻探技术. 2023(05): 1-7+179 . 本站查看
    18. 魏娟明. 滑溜水–胶液一体化压裂液研究与应用. 石油钻探技术. 2022(03): 112-118 . 本站查看
    19. 樊平天,刘月田,冯辉,周东魁,李平,周丰,秦静,余维初,史黎岩. 致密油新一代驱油型滑溜水压裂液体系的研制与应用. 断块油气田. 2022(05): 614-619 . 百度学术
    20. 郭建春,马莅,卢聪. 中国致密油藏压裂驱油技术进展及发展方向. 石油学报. 2022(12): 1788-1797 . 百度学术

    其他类型引用(7)

图(8)  /  表(1)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  67
  • PDF下载量:  194
  • 被引次数: 27
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2023-12-08
  • 录用日期:  2024-01-27
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-01-24

目录

/

返回文章
返回