基于阵列声波测井的井下多尺度压裂效果评价方法

李宁, 刘鹏, 范华军, 胡江涛, 武宏亮

李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001
引用本文: 李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001
LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging [J]. Petroleum Drilling Techniques,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001
Citation: LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging [J]. Petroleum Drilling Techniques,2024, 52(1):1-7. DOI: 10.11911/syztjs.2024001

基于阵列声波测井的井下多尺度压裂效果评价方法

基金项目: 中国石油天然气集团有限公司科学研究与技术开发项目“高精度深探测成像测井系列处理技术研究”(编号:2021DJ4002)、“斯通利波测井探测器及刻度关键技术研究”(编号:2022DJ3908)联合资助。
详细信息
    作者简介:

    李宁(1958—),男,北京人,1982年毕业于华东石油学院矿场地球物理测井专业,1989年获中国石油勘探开发研究院石油地质与勘探专业(测井方向)博士学位,正高级工程师,博士生导师,中国工程院院士,长期从事测井理论方法、应用软件等方面的教学与研究工作。系本刊编委。E-mail:ln@petrochina.com.cn

    通讯作者:

    武宏亮,wuhongliang@petrochina.com.cn

  • 中图分类号: TE357.1+4

Evaluation Method of Downhole Multi-Scale Fracturing Effect Based on Array Acoustic Logging

  • 摘要:

    为有效监测水力压裂效果、提高储层压裂效果评价精度,基于阵列声波测井资料的井下压裂效果评价方法,采用反射斯通利波提取和成像技术定量表征近井筒压裂缝,建立适用于测井观测系统的叠前深度偏移成像算法,以实现远井压裂缝的高精度成像,形成了基于阵列声波测井的井下多尺度压裂效果评价方法,并在中国西部某油田X1水平井成功应用。研究表明,基于阵列声波测井资料评价的压裂缝发育程度与压裂液注入量呈正相关关系,并且压裂缝最为发育层段与地震蚂蚁体属性图中天然裂缝发育位置一致。基于阵列声波测井的井下压裂效果评价方法的提出,对表征井周数十米范围内不同尺度压裂缝的发育情况具有重要意义,对更好地发挥水力压裂技术对能源勘探开发行业的支撑作用具有一定指导意义。

    Abstract:

    In order to effectively monitor the hydraulic fracturing effect and improve the evaluation accuracy of reservoir fracturing, an evaluation method of the downhole fracturing effect based on array acoustic logging data was adopted. The extraction and imaging technologies of reflected Stoneley wave were used to quantitatively characterize near-wellbore fractures, and a pre-stack depth migration imaging algorithm suitable for logging observation systems was proposed, achieving high-precision imaging of fractures in far from wells. In addition, an evaluation method of multi-scale fracturing effect based on array acoustic logging was developed and applied in horizontal well X1 in an oilfield in western China. The results show that the development degree of fractures evaluated based on array acoustic logging data is positively correlated with the injection amount of fracturing fluid, and the most developed zone of fractures is consistent with the development location of natural fractures in the seismic ant attribute map. The evaluation method of the downhole fracturing effect based on array acoustic logging is of great significance to characterize the development of fractures of different scales within tens of meters around the well, and it has certain guiding significance to better play the supporting role of hydraulic fracturing technologies for energy exploration and development industry.

  • 图  1   近井处压裂缝成像的流程

    Figure  1.   Imaging process of near-wellbore fractures

    图  2   X1井斯通利波压裂缝成像处理结果

    Figure  2.   Imaging results of Stoneley wave for fractures in Well X1

    图  3   X1井远井筒压裂裂缝远探测偏移成像结果

    Figure  3.   Migration imaging results by remote detection of fractures far from wellbore of horizontal well X1

    图  4   X1井远井裂缝定量评价结果

    Figure  4.   Quantitative evaluation of fractures far from wellbore of horizontal well X1

    图  5   过钻头阵列声波测井仪示意

    Figure  5.   Array acoustic logger through the bit

    图  6   X1井基于声波测井资料的水力压裂缝评价效果

    Figure  6.   Hydraulic fracture evaluation effect of horizontal well X1 based on acoustic logging data

    图  7   X1井1-19压裂段的压裂液注入量

    Figure  7.   Fracturing fluid injection amount in fracturing stages 1–19 of horizontal well X1

    图  8   穿过X1井的地震蚂蚁属性图

    Figure  8.   Seismic ant attribute map across horizontal well X1

    表  1   基于声波测井资料的水力压裂评价标准

    Table  1   Hydraulic fracturing evaluation criteria based on acoustic logging data

    近井筒压裂缝发育情况远井筒压裂缝发育情况压裂评价标准
    发育发育
    发育不发育
    不发育发育
    不发育不发育
    下载: 导出CSV
  • [1] 莫里斯·杜索尔特,约翰·麦克力兰,蒋恕. 大规模多级水力压裂技术在页岩油气藏开发中的应用[J]. 石油钻探技术,2011,39(3):6–16. doi: 10.3969/j.issn.1001-0890.2011.03.002

    DUSSEAULT M, MCLENNAN J, JIANG Shu. Massive multi-stage hydraulic fracturing for oil and gas recovery from low mobility reservoirs in China[J]. Petroleum Drilling Techniques, 2011, 39(3): 6–16. doi: 10.3969/j.issn.1001-0890.2011.03.002

    [2]

    SCHULTZ R, ATKINSON G, EATON D W, et al. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay Play[J]. Science, 2018, 359(6373): 304–308. doi: 10.1126/science.aao0159

    [3]

    ATKINSON G M, EATON D W, IGONIN N. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth & Environment, 2020, 1(5): 264–277.

    [4]

    THOMAS M, PARTRIDGE T, HARTHORN B H, et al. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK[J]. Nature Energy, 2017, 2(5): 17054. doi: 10.1038/nenergy.2017.54

    [5]

    CHENG Jiulong, SONG Guangdong, SUN Xiaoyun, et al. Research developments and prospects on microseismic source location in mines[J]. Engineering, 2018, 4(5): 653–660. doi: 10.1016/j.eng.2018.08.004

    [6]

    DONG Longjun, HU Qingchun, TONG Xiaojie, et al. Velocity-free MS/AE source location method for three-dimensional hole-containing structures[J]. Engineering, 2020, 6(7): 827–834. doi: 10.1016/j.eng.2019.12.016

    [7]

    JIANG Ruochen, DAI Feng, LIU Yi, et al. Fast marching method for microseismic source location in cavern-containing rockmass: performance analysis and engineering application[J]. Engineering, 2021, 7(7): 1023–1034. doi: 10.1016/j.eng.2020.10.019

    [8] 邹信波,刘帅,江任开,等. 水动力压裂技术在海上油田应用的可行性分析[J]. 钻采工艺,2021,44(3):60–63.

    ZOU Xinbo, LIU Shuai, JIANG Renkai, et al. Feasibility analysis of application of hydrodynamic fracturing technology in offshore oilfields[J]. Drilling & Production Technology, 2021, 44(3): 60–63.

    [9] 张国栋,庄春喜,黑创. 东海西湖凹陷探井储层压后缝高评价新方法[J]. 石油钻探技术,2016,44(5):122–126.

    ZHANG Guodong, ZHUANG Chunxi, HEI Chuang. New techniques for fracture height determination in exploration wells drilled in the Xihu Sag, East China Sea[J]. Petroleum Drilling Techniques, 2016, 44(5): 122–126.

    [10] 仝少凯,高德利. 水力压力波动注入压裂增产工艺的力学原理[J]. 石油钻采工艺,2018,40(2):265–274.

    TONG Shaokai, GAO Deli. Mechanical principles of hydraulic pressure fluctuation injection based on fracturing technology[J]. Oil Drilling & Production Technology, 2018, 40(2): 265–274.

    [11] 杨秀夫,刘希圣,陈勉,等. 国内外水力压裂技术现状及发展趋势[J]. 钻采工艺,1998,21(4):21–25.

    YANG Xiufu, LIU Xisheng, CHEN Mian, et al. Status quo of hydraulic fracturing technique and its developing trend at home and abroad[J]. Drilling & Production Technology, 1998, 21(4): 21–25.

    [12] 赵博雄,王忠仁,刘瑞,等. 国内外微地震监测技术综述[J]. 地球物理学进展,2014,29(4):1882–1888.

    ZHAO Boxiong, WANG Zhongren, LIU Rui, et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics, 2014, 29(4): 1882–1888.

    [13] 于辉,张海江. 水力压裂微地震监测稳定共振频率信号的解释[J]. 物探化探计算技术,2017,39(1):90–95. doi: 10.3969/j.issn.1001-1749.2017.01.13

    YU Hui, ZHANG Haijiang. Interpretation of stable resonance frequency signals observed from microseismic monitoring during hydraulic fracturing[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1): 90–95. doi: 10.3969/j.issn.1001-1749.2017.01.13

    [14] 张东晓,杨婷云. 页岩气开发综述[J]. 石油学报,2013,34(4):792–801. doi: 10.7623/syxb201304023

    ZHANG Dongxiao, YANG Tingyun. An overview of shale-gas production[J]. Acta Petrolei Sinica, 2013, 34(4): 792–801. doi: 10.7623/syxb201304023

    [15] 张驰,周彤,肖佳林,等. 涪陵页岩气田加密井压裂技术的实践与认识[J]. 断块油气田,2022,29(6):775–779.

    ZHANG Chi, ZHOU Tong, XIAO Jialin, et al. Practice and knowledge of fracturing technology for infill wells in Fuling Shale Gas Field[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 775–779.

    [16] 刘博,苗红波,徐刚,等. 微地震同步压裂监测技术研究与应用[J]. 钻采工艺,2017,40(4):53–55. doi: 10.3969/J.ISSN.1006-768X.2017.04.17

    LIU Bo, MIAO Hongbo, XU Gang, et al. Study on microseismic monitoring of synchronous fracturing and its applications[J]. Drilling & Production Technology, 2017, 40(4): 53–55. doi: 10.3969/J.ISSN.1006-768X.2017.04.17

    [17] 牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022,50(6):21–27. doi: 10.11911/syztjs.2022111

    NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21–27. doi: 10.11911/syztjs.2022111

    [18] 段银鹿,李倩,姚韦萍. 水力压裂微地震裂缝监测技术及其应用[J]. 断块油气田,2013,20(5):644–648.

    DUAN Yinlu, LI Qian, YAO Weiping. Microseismic fracture monitoring technology of hydraulic fracturing and its application[J]. Fault-Block Oil & Gas Field, 2013, 20(5): 644–648.

    [19] 朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验[J]. 石油钻探技术,2022,50(6):35–40.

    ZHU Zuyang. Numerical simulation and test of velocity imaging for remote detection acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35–40.

    [20] 孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022,50(4):114–120. doi: 10.11911/syztjs.2022089

    SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114–120. doi: 10.11911/syztjs.2022089

    [21] 刘西恩,孙志峰,仇傲,等. 随钻四极子声波测井仪的设计及试验[J]. 石油钻探技术,2022,50(3):125–131. doi: 10.11911/syztjs.2022058

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Design and experiment for a quadrupole acoustic LWD tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125–131. doi: 10.11911/syztjs.2022058

    [22] 刘美成. 致密储层测井评价技术及发展方向[J]. 特种油气藏,2022,29(4):12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002

    LIU Meicheng. Logging evaluation technology and further development of tight reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002

    [23] 陈斌,蔺敬旗,李兆春,等. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田,2021,28(4):550–554.

    CHEN Bin, LIN Jingqi, LI Zhaochun, et al. Application of array acoustic logging in shale oil volume fracturing effect evaluation[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 550–554.

    [24] 黑创,罗明璋,邹骁. 基于井孔散射波能量的水力压裂效果评价方法[J]. 长江大学学报(自然科学版),2021,18(3):14–20.

    HEI Chuang, LUO Mingzhang, ZOU Xiao. Evaluation methods of the hydraulic fracturing effect based on the energy of borehole scattered wave[J]. Journal of Yangtze University(Natural Science Edition), 2021, 18(3): 14–20.

    [25] 祁晓,张璋,李东,等. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法[J]. 石油钻探技术,2023,51(6):128–134.

    QI Xiao, ZHANG Zhang, LI Dong, et al. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128–134.

    [26]

    LI Ning, WANG Kewen, WU Hongliang, et al. Shock-induced Stoneley waves in carbonate rock samples[J]. Geophysics, 2019, 84(5): D209–D216. doi: 10.1190/geo2018-0399.1

    [27]

    LI Ning, WANG Kewen, LIU Peng, et al. Experimental study on attenuation of Stoneley wave under different fracture factors[J]. Petroleum Exploration and Development, 2021, 48(2): 299–307. doi: 10.1016/S1876-3804(21)60024-1

    [28] 夏宏泉,胡慧,杨林,等. 基于声波变密度测井信息识别水平井压裂裂缝的方法[J]. 石油钻探技术,2017,45(5):113–117.

    XIA Hongquan, HU Hui, YANG Lin, et al. Method about improving accuracy of fracture fluid friction pressure[J]. Petroleum Drilling Techniques, 2017, 45(5): 113–117.

    [29]

    FAN Huajun, LIU Peng, ZHAO Hao, et al. Forward modeling of P- and S-waves response of fractures intersected with horizontal wells in tight reservoirs[J]. Frontiers in Earth Science, 2023, 11: 1149171. doi: 10.3389/feart.2023.1149171

    [30]

    LIU Peng, WU Hongliang, LI Yusheng, et al. Hydraulic fracturing evaluation utilizing single-well S-wave imaging: improved processing method and field examples[C]//SPWLA 61st Annual Logging Symposium 2020. Houston: Society of Petrophysicists and Well-Log Analysts, 2020: J5TNW4WI.

    [31] 李宁,冯周,武宏亮,等. 中国陆相页岩油测井评价技术方法新进展[J]. 石油学报,2023,44(1):28–44. doi: 10.7623/syxb202301003

    LI Ning, FENG Zhou, WU Hongliang, et al. New advances in methods and technologies for well logging evaluation of continental shale oil in China[J]. Acta Petrolei Sinica, 2023, 44(1): 28–44. doi: 10.7623/syxb202301003

  • 期刊类型引用(1)

    1. 刘献博,薛亮,刘敏,王智明,张峥,邵天宇. 连续波钻井液脉冲发生器压力波波形优化研究. 石油机械. 2020(12): 44-51 . 百度学术

    其他类型引用(5)

图(8)  /  表(1)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  67
  • PDF下载量:  197
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2023-12-08
  • 录用日期:  2024-01-27
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-01-24

目录

    /

    返回文章
    返回