库车山前超深巨厚致密砂岩纵向细分层改造技术

彭芬, 张宝, 杨鹏程, 薛浩楠, 彭建新, 盛志民

彭芬,张宝,杨鹏程,等. 库车山前超深巨厚致密砂岩纵向细分层改造技术[J]. 石油钻探技术,2024, 52(2):187-193. DOI: 10.11911/syztjs.2023113
引用本文: 彭芬,张宝,杨鹏程,等. 库车山前超深巨厚致密砂岩纵向细分层改造技术[J]. 石油钻探技术,2024, 52(2):187-193. DOI: 10.11911/syztjs.2023113
PENG Fen, ZHANG Bao, YANG Pengcheng, et al. Vertical subdivision layer stimulation technology for ultra-deep and super-thick tight sandstone in Kuqa Piedmont [J]. Petroleum Drilling Techniques,2024, 52(2):187-193. DOI: 10.11911/syztjs.2023113
Citation: PENG Fen, ZHANG Bao, YANG Pengcheng, et al. Vertical subdivision layer stimulation technology for ultra-deep and super-thick tight sandstone in Kuqa Piedmont [J]. Petroleum Drilling Techniques,2024, 52(2):187-193. DOI: 10.11911/syztjs.2023113

库车山前超深巨厚致密砂岩纵向细分层改造技术

详细信息
    作者简介:

    彭芬(1988—),女,湖南湘阴人,2010年毕业于长江大学勘查技术与工程专业,2013年获中国石油大学(北京)油气井工程专业硕士学位,高级工程师,主要从事储层改造方面的研究工作。E-mail:13619956582@163.com

  • 中图分类号: TE357.2

Vertical Subdivision Layer Stimulation Technology for Ultra-Deep and Super-Thick Tight Sandstone in Kuqa Piedmont

  • 摘要:

    塔里木油田库车山前白垩系储层为超深巨厚裂缝性致密砂岩储层,天然裂缝发育,非均质性强,已改造井产气剖面测试显示常规笼统改造纵向厚储层动用不充分,产能释放不彻底。为了解决这一问题,对于油层厚度大且中间有明显隔层的井可实施分层压裂,提高纵向改造程度。通过工程地质一体化研究,利用多种测井数据,建立了一套多尺度近远井裂缝精细识别方法;基于钻井漏失量与产量关系认识,建立了一套综合考虑构造位置、钻井井漏、裂缝发育情况、力学活动性等资料的储层评估分类方法;通过双封隔器管柱力学精细校核,增加伸缩管,优化暂堵材料粒径,形成了“机械+暂堵”软硬分层压裂技术。该技术实现了巨厚储层高效动用,应用20口井,改造后单井产气量由6.7×104 m3/d提高至34.0×104 m3/d,平均增产4倍,提产效果显著,为巨厚致密砂岩储层高效开发提供了技术支撑。

    Abstract:

    The Cretaceous system in Kuqa Piedmont of Tarim Oilfield is a super-deep and super-thick fractured tight sandstone with developed natural fractures and strong heterogeneity. The gas production profile test of stimulated wells shows that the conventional general stimulation of vertical thick reservoirs is not sufficient, and the production capacity is not completely released. In order to solve these problems, layered fracturing technology can be implemented for wells with large reservoir thicknesses and obvious interlayers, which can also enhance the performance of vertical stimulation. A set of fine identification methods for multi-scale fractures of near and far wells was established by using multi-logging data through engineering and geology integration research. Based on the relationship between lost circulation and production, a set of reservoir evaluation classification methods was established, which comprehensively considered the structural location, lost circulation in drilling, fracture development, mechanical activity, and other data. Through fine mechanical checking of double packer pipe string, expansion pipe was added, and the grain size of temporary plugging material was optimized, forming a soft and hard layered fracturing technology featuring “mechanical + temporary plugging”, thus realizing the highly efficient production of the super-thick reservoir. The technology was applied to 20 wells, and the production of a single well was increased from 6.7×104 m3/d to 34.0×104 m3/d after stimulation, with the production remarkably increasing by four times on average. The technology provides strong technical support for the efficient development of super-thick tight sandstone reservoirs.

  • 图  1   测井成像、远探声波、地震技术解释不同距离裂缝示意

    Figure  1.   Interpretation of fractures with different distances by logging imaging, remote sonic wave, and seismic techniques

    图  2   克深2和克深8气藏裂缝视开度与无阻流量的关系

    Figure  2.   Relationship between apparent fracture opening and unimpeded flow for Keshen 2 and Keshen 8 reservoirs

    图  3   改造期间双封隔器之间环空压力随时间的变化

    Figure  3.   Changes in annular pressure between double packers during transformation with time

    图  4   库车山前多封隔分层压裂完井管柱

    Figure  4.   Completion pipe string of multiple packers for layered fracturing in Kuqa Piedmont

    图  5   可溶球在70 ℃、1.2% KCl溶液中的溶解情况

    Figure  5.   Solubility of soluble spheres in 1.2% KCl solution at 70 ℃

    图  6   压裂井的转向压力与漏失速度

    Figure  6.   The turning pressure and leakage rate of fractured wells

    图  7   暂堵剂承压试验结果(15 MPa)

    Figure  7.   Pressure bearing test results of temporary plugging agent(15 MPa)

    图  8   克深E井软硬分层压裂裂缝参数模拟结果

    Figure  8.   Simulation results of fracture parameters for soft and hard layered fracturing in Well Keshen E

    表  1   库车山前气藏白垩系巴什基奇克组储层评估分类

    Table  1   Reservoir evaluation classification of Cretaceous Bashijiqike Formation in gas reservoir in Kuqa Piedmont

    储层分类 井的位置 岩心裂缝特征 成像解释
    (SLB成像数据)
    井漏 代表井/区
    Ⅰ类储层 构造高部位  裂缝以半充填或未充填为主,裂缝开度大  裂缝密度>0.4条/m,
    应力–裂缝夹角<30°
     漏失量400~1 200 m3,漏点5~15个,且纵向均匀分布  克深8区块,B132
    井,博孜3井
    Ⅱ类储层 构造高部位  裂缝以半充填或未充填为主,裂缝开度大  裂缝密度>0.3条/m,
    应力–裂缝夹角<30°
     漏失量30~400 m3;漏点3~5个,且纵向均匀分布  B241井,C104井
    Ⅲ类储层 构造较低部位  裂缝不发育或少量的张剪缝,裂缝尺度小,充填性好  裂缝密度<0.3条/m,
    应力–裂缝夹角>30°
     漏失量0~30 m3,单个漏点或无漏失  B605井,C506井
    下载: 导出CSV

    表  2   库车山前储层分层压裂常用封隔器技术参数

    Table  2   Technical parameters of commonly used packers for layered fracturing in reservoir in Kuqa Piedmont

    生产套管组合完井封隔器组合封隔器
    内径/mm
    坐封压力/MPa球座打开
    压力/MPa
    最小最大设计
    ϕ206.4 mm套管+
    ϕ139.7 mm套管(悬挂)
    ϕ206.4 mm永久式封隔器73.6619.99568.94848.00053.32
    ϕ139.7 mm永久式封隔器58.6231.23359.22648.000
    ϕ177.8 mm套管+
    ϕ127.0 mm套管(悬挂)
    ϕ177.8 mm永久式封隔器73.2527.41059.59038.00043.63
    ϕ127.0 mm永久式封隔器48.5126.20059.29538.000
    下载: 导出CSV

    表  3   克深E井与邻井改造和投产数据对比

    Table  3   Comparison of stimulation and production data for Well Keshen E and adjacent wells

    井号 改造工艺 解释油气层
    厚度/m3
    总漏失
    量/m3
    孔隙
    度,%
    裂缝密度/
    (条∙m−1
    用液强度/
    (m3∙m−1
    加砂强度/
    (m3∙m−1
    改造前无阻流量/
    (104m3∙d–1
    改造后无阻流量/
    (104m3∙d–1
    克深A 笼统酸压 114.5 26.3 7.21 0.180 20.43 0 24.13
    克深C 笼统酸化 94.5 619.7 6.83 0.740 20.00 118.49 35.64
    克深B 笼统压裂 116.0 214.1 9.47 0.958 32.50 1.54 8.52 7.82
    克深E 机械+暂堵复合分层压裂 115.5 2.7 7.33 0.180 23.20 1.47 29.40 264.67
    下载: 导出CSV

    表  4   库车山前部分井暂堵升压效果统计

    Table  4   Statistics of temporary plugging and pressure ramp-up in partial wells in Kuqa Piedmont

    井号 改造井段/m 改造工艺 暂堵材料粒径/ mm 暂堵升压/MPa
    A-1 5412.00~5525.00 暂堵酸压 1~5,5~10 12.8
    A-2 5524.00~5620.00 暂堵酸压 1~5,5~10 5.2
    A-3 6805.00~6937.00 机械分层+暂堵转向压裂 1~5,5~10 7.0
    6959.00~7020.00 1~5,5~10 8.9
    A-4 6112.00~6197.50 暂堵加砂压裂 1~5,5~10 13.0
    A-5 7677.00~7760.50 暂堵加砂压裂 1~5,5~10 11.3
    A-6 6267.00~6336.00 暂堵加砂压裂 1~5,5~10 8.0
    A-7 6873.00~6991.00 暂堵加砂压裂 1~5,5~10 6.2
    A-8 7177.00~7259.50 暂堵酸压 1~5,5~10 20.5
    平均 10.3
    下载: 导出CSV
  • [1] 王俊鹏,曾联波,周露,等. 塔里木盆地克拉苏构造带超深层储层裂缝发育模式及开发意义[J]. 地球科学,2023,48(7):2520–2534.

    WANG Junpeng, ZENG Lianbo, ZHOU Lu, et al. Development model of natural fractures in ultra-deep sandstone reservoirs with low porosity in Kelasu Tectonic Belt, Tarim Basin[J]. Earth Science, 2023, 48(7): 2520–2534.

    [2] 江同文,孙雄伟. 库车前陆盆地克深气田超深超高压气藏开发认识与技术对策[J]. 天然气工业,2018,38(6):1–9. doi: 10.3787/j.issn.1000-0976.2018.06.001

    JIANG Tongwen, SUN Xiongwei. Development of Keshen ultra-deep and ultra-high pressure gas reservoirs in the Kuqa foreland basin, Tarim Basin: understanding points and technical countermeasures[J]. Natural Gas Industry, 2018, 38(6): 1–9. doi: 10.3787/j.issn.1000-0976.2018.06.001

    [3] 王振彪,孙雄伟,肖香姣. 超深超高压裂缝性致密砂岩气藏高效开发技术:以塔里木盆地克拉苏气田为例[J]. 天然气工业,2018,38(4):87–95.

    WANG Zhenbiao, SUN Xiongwei, XIAO Xiangjiao. Efficient development technologies for ultradeep, overpressured and fractured sandstone gas reservoirs: a cased study of the Kelasu Gas Field in the Tarim Basin[J]. Natural Gas Industry, 2018, 38(4): 87–95.

    [4] 刘群明,唐海发,吕志凯,等. 超深层气藏裂缝发育模式及水侵规律:以塔里木盆地克深2、9、8气藏为例[J]. 天然气地球科学,2023,34(6):963–972.

    LIU Qunming, TANG Haifa, LYU Zhikai, et al. Study on gas-water distribution and water invasion law under different fracture development models in ultra-deep gas reservoir: taking Keshen 2, 9 and 8 gas reservoirs of Tarim Basin as examples[J]. Natural Gas Geoscience, 2023, 34(6): 963–972.

    [5] 赵炜. 煤系气藏多层合采井口产量变化规律实验研究[D]. 北京:中国石油大学(北京),2020.

    ZHAO Wei. Experimental study on the change rule of multilayer combined-production wellhead in coal measure gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.

    [6] 常玉翠. 煤储层和致密层耦合产气机理及合采效果评价[D]. 北京:中国石油大学(北京),2019.

    CHANG Yucui. Mechanism and effect evaluation of commingled production of CBM reservoir and tight gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2019.

    [7] 彭永洪,陈飞,李彦召,等. 库车山前大斜度井储层改造试验与认识[J]. 钻采工艺,2021,44(3):33–36.

    PENG Yonghong, CHEN Fei, LI Yanzhao, et al. Experiment and cognition of reservoir stimulation in highly-deviated well in Kuqa foreland basin[J]. Drilling & Production Technology, 2021, 44(3): 33–36.

    [8] 黄有泉,王金友,张宏岩,等. 大庆油田ϕ100 mm套损井精细压裂工艺技术[J]. 石油钻采工艺,2022,44(5):618–622.

    HUANG Youquan, WANG Jinyou, ZHANG Hongyan, et al. Fine fracturing technology for ϕ100 mm casing damaged wells in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2022, 44(5): 618–622.

    [9] 翁定为,杨战伟,任登峰,等. 提高超深裂缝性储层改造体积技术研究及应用[J]. 世界石油工业,2023,30(4):55–62.

    WENG Dingwei, YANG Zhanwei, REN Dengfeng, et al. Application and improvement of ultra-deep fractured reservoir stimulated volume technology[J]. World Petroleum Industry, 2023, 30(4): 55–62.

    [10] 雷群,杨战伟,翁定为,等. 超深裂缝性致密储集层提高缝控改造体积技术:以库车山前碎屑岩储集层为例[J]. 石油勘探与开发,2022,49(5):1012–1024.

    LEI Qun, YANG Zhanwei, WENG Dingwei, et al. Techniques for improving fracture-controlled stimulated reservoir volume in ultra-deep fractured tight reservoirs: a case study of Kuqa piedmont clastic reservoirs, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(5): 1012–1024.

    [11] 毛哲,曾联波,刘国平,等. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性[J]. 石油与天然气地质,2020,41(6):1212–1221.

    MAO Zhe, ZENG Lianbo, LIU Guoping, et al. Characterization and effectiveness of natural fractures in deep tight sandstones at the south margin of the Junggar Basin, northwestern China[J]. Oil & Gas Geology, 2020, 41(6): 1212–1221.

    [12]

    YANG Xiangtong, PAN Yuanwei, FAN Wentong, et al. Case study: 4D reservoir geomechanics simulation of an HP/HT naturally fractured reservoir[R]. SPE 187606, 2017.

    [13] 祁晓,张璋,李东,等. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法[J]. 石油钻探技术,2023,51(6):128–134.

    QI Xiao, ZHANG Zhang, LI Dong, et al. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128–134.

    [14] 蔡明,章成广,韩闯,等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报(自然科学版),2020,44(1):45–52.

    CAI Ming, ZHANG Chengguang, HAN Chuang, et al. Experimental research of effect of microfracture on shear wave attenuation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(1): 45–52.

    [15] 赖锦,王贵文,孙思勉,等. 致密砂岩储层裂缝测井识别评价方法研究进展[J]. 地球物理学进展,2015,30(4):1712–1724.

    LAI Jin, WANG Guiwen, SUN Simian, et al. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs[J]. Progress in Geophysics, 2015, 30(4): 1712–1724.

    [16] 谢海龙. 塔里木山前构造复杂地质条件下的钻井液技术在大古一井的应用[J]. 钻采工艺,2008,31(1):135–137.

    XIE Hailong. Application of high density mud in Well DG-1 in Tarim mountain front[J]. Drilling & Production Technology, 2008, 31(1): 135–137.

    [17] 陈雪峰,李博,张晓兵,等. 塔里木山前构造盐膏层随钻扩眼钻井技术应用与认识[J]. 西部探矿工程,2022,34(9):96–99.

    CHEN Xuefeng, LI Bo, ZHANG Xiaobing, et al. Application and understanding of drilling while drilling technology for salt gypsum layer in Tarim piedmont structure[J]. West-China Exploration Engineering, 2022, 34(9): 96–99.

    [18] 侯冰,陈勉,卢虎,等. 库车山前下第三系漏失原因分析及堵漏方法[J]. 石油钻采工艺,2009,31(4):40–44.

    HOU Bing, CHEN Mian, LU Hu, et al. Cause analysis of lost circulation and plugging method in Paleogene of Kuqa piedmont structure[J]. Oil Drilling & Production Technology, 2009, 31(4): 40–44.

    [19]

    HUANG Jinsong, GRIFFITHS D V, WONG Sau-Wai. Characterizing natural-fracture permeability from mud-loss data[J]. SPE Journal, 2011, 16(1): 111–114.

    [20] 许闿麟. 碳酸盐岩裂缝—孔隙性地层钻井液漏失模型[J]. 特种油气藏,2016,23(6):133–135.

    XU Kailin. Mud loss model in carbonate fracture-pore formation[J]. Special Oil & Gas Reservoirs, 2016, 23(6): 133–135.

    [21] 孙致学,姜宝胜,肖康,等. 基于新型集成学习算法的基岩潜山油藏储层裂缝开度预测算法[J]. 油气地质与采收率,2020,27(3):32–38.

    SUN Zhixue, JIANG Baosheng, XIAO Kang, et al. Prediction of fracture aperture in bedrock buried hill oil reservoir based on novel ensemble learning algorithm[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 32–38.

    [22] 邹国庆,熊勇富,袁孝春,等. 低孔裂缝性致密储层暂堵转向酸压技术及应用[J]. 钻采工艺,2014,37(5):66–68.

    ZOU Guoqing, XIONG Yongfu, YUAN Xiaochun, et al. Temporary plugging and diverting acid fracturing technology and its application in low porosity and fractured reservoir[J]. Drilling & Production Technology, 2014, 37(5): 66–68.

    [23] 刘豇瑜,张亚红,张晖,等. 高强度纤维复合暂堵剂试验研究及现场应用[J]. 石化技术,2017,24(8):101–104.

    LIU Jiangyu, ZHANG Yahong, ZHANG Hui, et al. Experimental research and application of high strength fiber composite plugging agent[J]. Petrochemical Industry Technology, 2017, 24(8): 101–104.

  • 期刊类型引用(5)

    1. 杨顺辉,何汉平,张智,窦雪锋,银熙炉. 多功能环空带压地面诊断方法及装置研究. 西南石油大学学报(自然科学版). 2023(05): 131-139 . 百度学术
    2. 李录兵,李兵,罗凌燕,成武斌,施闯. 基于大数据分析的智能油气井筒预警分析系统建设方案研究. 中国石油和化工标准与质量. 2021(06): 21-23+25 . 百度学术
    3. 罗洋. 气井管柱完整性技术研究进展与展望. 化学工程与装备. 2021(06): 231-233 . 百度学术
    4. 张波,罗方伟,孙秉才,谢俊峰,胥志雄,廖华林. 深层油气井井筒完整性检测方法. 石油钻探技术. 2021(05): 114-120 . 本站查看
    5. 张绍辉,张成明,潘若生,耿笑然,柏明星. CO_2驱注入井井筒完整性分析与风险评价. 西安石油大学学报(自然科学版). 2018(06): 90-95+123 . 百度学术

    其他类型引用(8)

图(8)  /  表(4)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  13
  • PDF下载量:  74
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2024-01-11
  • 网络出版日期:  2024-01-17
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回