海上水基钻屑高效密闭输送技术

王景, 祁健, 岳明

王景,祁健,岳明. 海上水基钻屑高效密闭输送技术[J]. 石油钻探技术,2024,52(3):53-60. DOI: 10.11911/syztjs.2023105
引用本文: 王景,祁健,岳明. 海上水基钻屑高效密闭输送技术[J]. 石油钻探技术,2024,52(3):53-60. DOI: 10.11911/syztjs.2023105
WANG Jing, QI Jian, YUE Ming. Efficient closed transportation technologies for offshore water-based drilling cuttings [J]. Petroleum Drilling Techniques, 2024, 52(3):53-60. DOI: 10.11911/syztjs.2023105
Citation: WANG Jing, QI Jian, YUE Ming. Efficient closed transportation technologies for offshore water-based drilling cuttings [J]. Petroleum Drilling Techniques, 2024, 52(3):53-60. DOI: 10.11911/syztjs.2023105

海上水基钻屑高效密闭输送技术

详细信息
    作者简介:

    王景(1983—),男,河北定州人,2007年毕业于河北科技师范学院机械设计制造及其自动化专业,工程师,主要从事钻完井技术、装备及油气田环保等相关技术研究及项目施工管理。E-mail:wangjing26@cnooc.com.cn

  • 中图分类号: TE21

Efficient Closed Transportation Technologies for Offshore Water-Based Drilling Cuttings

  • 摘要:

    为解决海上水基钻屑回收过程中输送效率低、环保风险高等问题,在分析水基钻屑特性及输送难点的基础上,研究了适用于海上水基钻屑输送的高效密闭输送技术,分析了钻屑输送过程中的摩阻,进行了降阻和防堵清管技术研究。模型计算结果与现场试验表明,水基钻屑密闭输送宜采用液压输送方式,结合输送管道设计和增压混合器,有效降阻提速,当泵送速度设置为30%~100%时,输送量7.5~25.7 m3/h,泵送压力1.4~2.8 MPa。研究结果表明,海上水基钻屑密闭输送技术解决了水基钻屑高效、密闭、远距离输送的难题,能够满足海上钻井作业的需要,具有较好的推广应用价值。

    Abstract:

    In order to solve the problems of low transportation efficiency and high environmental protection risks in the process of offshore water-based drilling cuttings recovery, based on the analysis of the characteristics and transportation difficulties of water-based drilling cuttings, a set of efficient closed transportation technologies suitable for offshore water-based drilling cuttings transportation was studied, and the frictional resistance in the transportation process of drilling cuttings was analyzed. Research on resistance reduction and anti-blocking pigging technologies was also conducted. The model calculation results and field test data showed that the closed transportation of water-based drilling cuttings should adopt hydraulic transportation technology, combined with the design of transportation pipeline and pressurized mixer, to effectively reduce resistance and improve the velocity. When the pumping speed was set at 30%−100%, the transportation capacity was 7.5−25.7 m3/h, and the pumping pressure was 1.4−2.8 MPa. The research results show that the closed transportation technology of offshore water-based drilling cuttings solves the problems of efficient, closed, and long-distance transportation of water-based drilling cuttings. It can meet the needs of offshore drilling operations and is of great popularization, application, and commercialization value.

  • 图  1   钻屑密闭输送工艺流程

    Figure  1.   Closed transportation process of drilling cuttings

    图  2   钻屑在管道内的流动状态

    Figure  2.   Flow state of drilling cuttings in a pipeline

    图  3   钻屑表面有润滑层时的流动状态

    Figure  3.   Flow state when there is a lubricating layer on the surface of drilling cuttings

    图  4   钻屑高效传输装置的结构

    1.底架;2.主油缸1;3.水箱;4.润滑泵;5.料缸1;6.进料斗;7.出料斗;8.出料油缸1;9.出料口;10.出料油缸2;11.出料群阀1;12.出料群阀2;13.进料群阀2;14.进料群阀1;15.料缸2;16.活塞2;17.活塞1;18.主油缸2

    Figure  4.   Structure of efficient transportation device for drilling cuttings

    图  5   管道几何模型示意

    Figure  5.   Geometric model of pipeline

    图  6   管道不同位置处的压力

    Figure  6.   Pressure at different positions of the pipeline

    图  7   选定的4个位置

    Figure  7.   Selected 4 positions

    图  8   不同位置处的速度和压力剖面

    Figure  8.   Velocity and pressure profile at different positions

    图  9   增压混合器的结构

    Figure  9.   Structure of pressurized mixer

    表  1   钻屑的物性参数

    Table  1   Physical parameters of drilling cuttings

    样品序号含液率,
    %
    平均密度/
    (g·cm−3
    固体颗粒密度/
    (g·cm−3
    固体颗粒粒径/
    mm
    表观黏度/
    (Pa·s)
    静置2 h后物态
    168.01.232.690.1845.40固液分层,界面清晰
    252.01.422.310.1811.06固液分层,界面清晰
    345.71.422.320.073.81固液分层,界面清晰
    下载: 导出CSV

    表  2   气动与液压2种输送方式下水基钻屑输送试验的结果

    Table  2   Results of conveying water-based drilling cuttings using pneumatic and hydraulic conveying methods

    输送方式输送介质功率/kW输送量/
    (m3·h−1
    占地面积/
    m2
    输送
    压力/MPa
    输送
    距离/m
    输送管道
    直径/mm
    输送管道
    承压/MPa
    连续作业无
    故障时间/h
    气动水基钻屑1603517.00.8100127.022
    液压水基钻屑60307.55.0150101.668
    下载: 导出CSV

    表  3   不同工况下湍流与层流模型计算出的压降

    Table  3   Pressure drop calculated by turbulence and laminar models under different operating conditions

    工况
    不同模型计算的压降/MPa
    Realizable κε模型雷诺应力模型层流模型
    不考虑重力,20 ℃4.2824.6554.438
    不考虑重力,25 ℃3.6133.9133.735
    考虑重力,20 ℃3.7914.1643.947
    考虑重力,25 ℃3.7223.4223.233
    下载: 导出CSV

    表  4   摩阻计算结果

    Table  4   Friction calculation results

    计算方法摩阻/MPa泵供压力/
    MPa
    忽略重力考虑重力
    理论法8.0237.5359.035
    OLGA法6.8526.3607.860
    FLUENT单相流5.1224.6286.128
    FLUENT多相流5.2264.7286.228
    流变原理法6.6846.2677.770
    下载: 导出CSV

    表  5   增压混合器仿真结果

    Table  5   Simulation results of pressurized mixer

    入射
    压力/MPa
    喷嘴倾斜
    角度/(°)
    喷嘴最大射流
    速度/(m·s−1
    最大湍动能
    (m2·s−2
    混合器出口平均
    速度/(m·s−1
    混合器进出口
    压差/MPa
    混合器内部最大
    负压/MPa
    103076.8610.271.2670.013−0.110
    104576.510.251.1800.002−0.103
    2030130.926.861.3150.073−0.370
    2045130.026.771.2960.042−0.198
    3030173.945.841.4410.160−0.443
    3045172.545.641.3890.092−0.305
    4030210.266.281.5840.247−0.515
    4045208.665.931.4670.146−0.397
    5030243.087.781.6340.338−0.627
    5045240.287.251.5380.202−0.481
    下载: 导出CSV

    表  6   现场试验结果

    Table  6   Field test results

    泵送速度,
    %
    钻井井深/
    m
    测试时间/
    min
    A缸压力/MPaB缸压力/
    MPa
    锥阀压力/MPa缸冲次/min−1平均实际输送量/(m3·h−1)
    30365601.41.46.22.47.5
    40987601.81.76.23.411.4
    701 2581202.02.26.25.618.3
    1001 989602.82.86.27.825.7
    下载: 导出CSV
  • [1] 梅波. 渤海海域油气田水基钻井废弃物危险特性研究[J]. 天津化工,2022,36(2):121–124. doi: 10.3969/j.issn.1008-1267.2022.02.035

    MEI Bo. Research of hazard identification of water-based drilling wastes in Bohai offshore oilfield[J]. Tianjin Chemical Industry, 2022, 36(2): 121–124. doi: 10.3969/j.issn.1008-1267.2022.02.035

    [2] 苏勤,何青水,张辉,等. 国外陆上钻井废弃物处理技术[J]. 石油钻探技术,2010,38(5):106–110.

    SU Qin, HE Qingshui, ZHANG Hui, et al. Foreign onshore drilling waste treatment technology[J]. Petroleum Drilling Techniques, 2010, 38(5): 106–110.

    [3] 张羽臣,岳明,霍宏博,等. 渤海钻井废物无害化处置技术研究[J]. 油气田环境保护,2020,30(5):13–16. doi: 10.3969/j.issn.1005-3158.2020.05.004

    ZHANG Yuchen, YUE Ming, HUO Hongbo, et al. Research on the harmless disposal technology of drilling waste in Bohai Oilfield[J]. Environmental Protection of Oil & Gas Fields, 2020, 30(5): 13–16. doi: 10.3969/j.issn.1005-3158.2020.05.004

    [4] 李晓刚,杨保健,王攀. 勘探环保配套技术的研究及在渤海油田的应用[J]. 科技创新与应用,2018(20):113–114.

    LI Xiaogang, YANG Baojian, WANG Pan. Research on supporting technology of exploration and environmental protection and its application in Bohai Oil Field[J]. Technology Innovation and Application, 2018(20): 113–114.

    [5] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95–102. doi: 10.11911/syztjs.2019054

    WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102. doi: 10.11911/syztjs.2019054

    [6] 薛玉志,马云谦,李公让,等. 海上废弃钻井液处理研究[J]. 石油钻探技术,2008,36(5):12–16. doi: 10.3969/j.issn.1001-0890.2008.05.003

    XUE Yuzhi, MA Yunqian, LI Gongrang, et al. Offshore waste drilling fluid treatment[J]. Petroleum Drilling Techniques, 2008, 36(5): 12–16. doi: 10.3969/j.issn.1001-0890.2008.05.003

    [7] 谢恩年. 渤海生态修复与治理思路[J]. 环境保护,2010(11):49–51. doi: 10.3969/j.issn.0253-9705.2010.11.014

    XIE Ennian. Ideas on ecological restoration and governance in the Bohai Sea[J]. Environmental Protection, 2010(11): 49–51. doi: 10.3969/j.issn.0253-9705.2010.11.014

    [8] 江先雄. 美国海上CleanCut闭式钻屑清除系统[J]. 石油机械,2002,30(11):59–60. doi: 10.3969/j.issn.1001-4578.2002.11.021

    JIANG Xianxiong. American offshore CleanCut closed cuttings removal system[J]. China Petroleum Machinery, 2002, 30(11): 59–60. doi: 10.3969/j.issn.1001-4578.2002.11.021

    [9] 安文忠,陈建兵,牟小军,等. 钻屑回注技术及其在国内油田的首次应用[J]. 石油钻探技术,2003,31(1):22–25. doi: 10.3969/j.issn.1001-0890.2003.01.008

    AN Wenzhong, CHEN Jianbing, MOU Xiaojun, et al. Applications of cuttings re-injection technology used in Penglai 19-3 Oilfield[J]. Petroleum Drilling Techniques, 2003, 31(1): 22–25. doi: 10.3969/j.issn.1001-0890.2003.01.008

    [10] 吕广,马英文,张晓诚,等. 水基钻屑絮凝压滤一体机的研制与应用[J]. 石油机械,2020,48(6):52–56. doi: 10.16082/j.cnki.issn.1001-4578.2020.06.008

    LYU Guang, MA Yingwen, ZHANG Xiaocheng, et al. Research and application of water based drilling cuttings flocculation filter press system[J]. China Petroleum Machinery, 2020, 48(6): 52–56. doi: 10.16082/j.cnki.issn.1001-4578.2020.06.008

    [11] 侯永亮,宋峙潮,陈真,等. “零排放” 技术在渤海油田的研究与应用[J]. 石油化工应用,2022,41(4):34–38. doi: 10.3969/j.issn.1673-5285.2022.04.008

    HOU Yongliang, SONG Zhichao, CHEN Zhen, et al. Research and application of “zero emission” technology in Bohai Oilfield[J]. Petrochemical Industry Application, 2022, 41(4): 34–38. doi: 10.3969/j.issn.1673-5285.2022.04.008

    [12] 吕聪. 钻井液粘滞力作用下大位移井附加摩阻扭矩计算分析[J]. 石化技术,2019,26(8):54–56. doi: 10.3969/j.issn.1006-0235.2019.08.035

    LYU Cong. Calculation and analysis of additional friction torque of extended reach well under viscous force of drilling fluid[J]. Petrochemical Industry Technology, 2019, 26(8): 54–56. doi: 10.3969/j.issn.1006-0235.2019.08.035

    [13] 蔡利山,赵素丽. 钻井液润滑剂润滑能力影响因素分析与评价[J]. 石油钻探技术,2003,31(1):44–46. doi: 10.3969/j.issn.1001-0890.2003.01.016

    CAI Lishan, ZHAO Suli. Analysis and evaluation of influence factors of lubricating ability of lubricants for drilling fluids[J]. Petroleum Drilling Techniques, 2003, 31(1): 44–46. doi: 10.3969/j.issn.1001-0890.2003.01.016

    [14] 李晓玫. 新型高稳定且低黏附超疏水表面的制备及其性能研究[D]. 成都: 电子科技大学, 2019.

    LI Xiaomei. Preparation and properties of a novel superhydrophobic surface with high stability and low adhesion[D]. Chengdu: University of Electronic Science and Technology of China, 2019.

    [15] 郭光明,郑晓雯,吴淼. 管道输送危险废物泵送压力试验研究[J]. 矿业科学学报,2021,6(1):82–90.

    GUO Guangming, ZHENG Xiaowen, WU Miao. Experimental study on pumping pressure of pipeline transportation of hazardous waste[J]. Journal of Mining Science, 2021, 6(1): 82–90.

    [16] 许振良. 一个非均质流水力坡度解析的新模型[J]. 泥沙研究,2000,25(1):56–64. doi: 10.3321/j.issn:0468-155X.2000.01.009

    XU Zhenliang. A new model of predicting hydraulic gradient for settling slurry flow in a horizontal pipe[J]. Journal of Sediment Research, 2000, 25(1): 56–64. doi: 10.3321/j.issn:0468-155X.2000.01.009

    [17] 罗焕,薛登存,张婷婷. 三种气液混输软件的模拟计算与分析[J]. 中国科技信息,2015(1):114–116. doi: 10.3969/j.issn.1001-8972.2015.01.042

    LUO Huan, XUE Dengcun, ZHANG Tingting. Simulation calculation and analysis of three gas-liquid mixed transport software[J]. China Science and Technology Information, 2015(1): 114–116. doi: 10.3969/j.issn.1001-8972.2015.01.042

    [18] 吴鑫鑫,安垚,孙啸,等. 管道仿真技术发展与应用进展[J]. 管道技术与设备,2017(4):1–3. doi: 10.3969/j.issn.1004-9614.2017.04.001

    WU Xinxin, AN Yao, SUN Xiao, et al. Development and advances in application of pipeline simulation technology[J]. Pipeline Technique and Equipment, 2017(4): 1–3. doi: 10.3969/j.issn.1004-9614.2017.04.001

    [19] 吕科,赵涛. 基于不同数学模型对某弯道式渠首水沙运动的数值模拟对比研究[J]. 水资源与水工程学报,2018,29(2):150–155.

    LYU Ke, ZHAO Tao. Numerical simulation study on flow and sediment movement of a bend canal based on different mathematical models[J]. Journal of Water Resources and Water Engineering, 2018, 29(2): 150–155.

    [20] 胡远洋,江斌,江文彬,等. 文丘里分流器的结构优化与分配特性研究[J]. 合肥工业大学学报(自然科学版),2022,45(6):736–741. doi: 10.3969/j.issn.1003-5060.2022.06.004

    HU Yuanyang, JIANG Bin, JIANG Wenbin, et al. Study on structure optimization and distribution characteristics of Venturi distributor[J]. Journal of Hefei University of Technology(Natural Science), 2022, 45(6): 736–741. doi: 10.3969/j.issn.1003-5060.2022.06.004

    [21] 刘德灿. 文丘里喷射泵结构设计与流场分析[J]. 机电技术,2021(5):52–55. doi: 10.19508/j.cnki.1672-4801.2021.05.016

    LIU Decan. Structural design and flow field analysis of Venturi jet pump[J]. Mechanical & Electrical Technology, 2021(5): 52–55. doi: 10.19508/j.cnki.1672-4801.2021.05.016

  • 期刊类型引用(4)

    1. 曾义金,金衍,周英操,陈军海,李牧,光新军,卢运虎. 深层油气钻采技术进展与展望. 前瞻科技. 2023(02): 32-46 . 百度学术
    2. 王志战. 中国石化录井技术新进展与发展方向思考. 石油钻探技术. 2023(04): 124-133 . 本站查看
    3. 王志战,杜焕福,李香美,牛强. 陆相页岩油录井重点发展领域与技术体系构建. 石油钻探技术. 2021(04): 155-162 . 本站查看
    4. 马永生,黎茂稳,蔡勋育,徐旭辉,胡东风,曲寿利,李根生,何登发,肖贤明,曾义金,饶莹,马晓潇. 海相深层油气富集机理与关键工程技术基础研究进展. 石油实验地质. 2021(05): 737-748 . 百度学术

    其他类型引用(0)

图(9)  /  表(6)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  40
  • PDF下载量:  61
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2023-10-23
  • 网络出版日期:  2023-11-12
  • 刊出日期:  2024-05-24

目录

    /

    返回文章
    返回