鄂尔多斯盆地页岩油水平井CO2区域增能体积压裂技术

张矿生, 齐银, 薛小佳, 陶亮, 陈文斌, 武安安

张矿生,齐银,薛小佳,等. 鄂尔多斯盆地页岩油水平井CO2区域增能体积压裂技术[J]. 石油钻探技术,2023, 51(5):15-22. DOI: 10.11911/syztjs.2023091
引用本文: 张矿生,齐银,薛小佳,等. 鄂尔多斯盆地页岩油水平井CO2区域增能体积压裂技术[J]. 石油钻探技术,2023, 51(5):15-22. DOI: 10.11911/syztjs.2023091
ZHANG Kuangsheng, QI Yin, XUE Xiaojia, et al. CO2 regional enhanced volumetric fracturing technology for shale oil horizontal wells in Ordos Basin [J]. Petroleum Drilling Techniques,2023, 51(5):15-22. DOI: 10.11911/syztjs.2023091
Citation: ZHANG Kuangsheng, QI Yin, XUE Xiaojia, et al. CO2 regional enhanced volumetric fracturing technology for shale oil horizontal wells in Ordos Basin [J]. Petroleum Drilling Techniques,2023, 51(5):15-22. DOI: 10.11911/syztjs.2023091

鄂尔多斯盆地页岩油水平井CO2区域增能体积压裂技术

基金项目: 国家科技重大专项“鄂尔多斯盆地致密油开发示范工程”(编号:2017ZX05069)、中国石油天然气股份有限公司重大专项“鄂尔多斯盆地页岩油勘探开发理论与关键技术研究”(编号:2021DJ1806)联合资助
详细信息
    作者简介:

    张矿生(1976—),男,陕西西安人,1998年毕业于西南石油学院石油工程专业,2004年获西南石油学院油气田开发工程专业硕士学位,高级工程师,主要从事低渗透、非常规油气储层改造方面的研究与管理工作。E-mail:zks_cq@petrochina.com。

    通讯作者:

    陶亮,taoliangyouxiang@163.com

  • 中图分类号: TE357.1

CO2 Regional Enhanced Volumetric Fracturing Technology for Shale Oil Horizontal Wells in Ordos Basin

  • 摘要:

    针对鄂尔多斯盆地页岩油储层压力低、缝网复杂程度低和黄土塬水资源缺乏等问题,以该盆地庆城油田页岩油为研究对象,进行了滑溜水和CO2压裂物理模拟试验,利用高能CT监测了CO2压裂裂缝扩展规律,分析了CO2压裂形成复杂裂缝的可行性;利用油藏数值模拟方法,优化了CO2注入关键参数,形成了适合庆城油田页岩油的CO2区域增能体积压裂技术。研究表明:前置CO2压裂可提高长7段页岩油储层裂缝复杂程度,裂缝沿层理弱面扩展并纵向穿层形成缝网;增能理念应由单井段间交替增能向平台整体注入实现井间、段间协同一体增能转变,单井采用全井段注入增能模式,可实现缝控区域全覆盖。庆城油田某平台进行了页岩油CO2区域增能体积压裂试验,与采用常规体积压裂技术的邻井相比,3口试验水平井平均压力保持程度提高1.5倍,单井平均初期产油量提高28.6%。研究和现场试验结果表明,CO2区域增能体积压裂能提高裂缝复杂程度,增加区域地层能量,提高单井产能,可为鄂尔多斯盆地页岩油开发提供技术支持。

    Abstract:

    In response to the problems of low pressure, high fluid flow resistance, low energy enhancement efficiency of slick water fracturing, and low complexity of fracture networks in shale oil reservoirs in Ordos Basin, a physical simulation experiment of slick water and CO2 fracturing was conducted in the Qingcheng shale oil block of Ordos Basin. The expansion law of CO2 fracturing fractures was monitored using high-energy computerized tomography (CT) scanning, and the feasibility of CO2 fracturing to form complex fractures was analyzed. By using reservoir numerical simulation methods, the key parameters of CO2 injection were optimized, forming a CO2 regional energy enhancement and volumetric fracturing technology suitable for the Qingcheng shale oil block. Research showed that pre-CO2 fracturing could increase the complexity of fractures in Chang 7 shale oil, with fractures spreading along weak bedding planes and forming a fracture network through the layers vertically. The concept of energy enhancement should be achieved by injecting energy into the platform as a whole instead of alternating energy enhancement between single well sections and injecting energy into the platform as a whole, achieving a transformation of integrated energy enhancement between wells and sections. The single well that adopted the full well section injection energy enhancement mode could achieve full coverage of the fracture control area. Based on a platform in the Qingcheng shale oil block, a shale oil CO2 regional energy enhancement and volumetric fracturing test was conducted. Compared with conventional volumetric fracturing adjacent wells, the average pressure retention of the three test horizontal wells increased by 1.5 times, and the average initial oil production of a single well increased by 28.6%. Research and on-site experiments showed that CO2 regional energy enhancement and volumetric fracturing could increase the complexity of fractures, enhance regional formation energy, and improve single well productivity, providing technical support for shale oil development in Ordos Basin.

  • 图  1   庆城油田延长组长7段岩性综合柱状图

    Figure  1.   Comprehensive histogram of Chang 7 of Yanchang Formation in Ordos Basin

    图  2   长7段露头岩心注入不同介质后的压裂裂缝扩展情况和CT扫描结果

    Figure  2.   Fracture expansion and CT scanning results of Chang 7 outcrop core injected different media

    图  3   页岩油单段压裂油藏3D数值模型

    Figure  3.   3D numerical model of single-stage shale oil fracturing reservoir

    图  4   单井注入CO2后地层压力分布

    Figure  4.   Formation pressure distribution field diagram of single well CO2 injection

    图  5   平台多井区域注入CO2后地层压力分布

    Figure  5.   Formation pressure distribution of CO2 injection in multi-well area of platform

    图  6   段间交替注入模式下的地层压力分布

    Figure  6.   Formation pressure distribution of alternating injection mode between sections

    图  7   距离水力裂缝面不同位置的地层压力

    Figure  7.   Formation pressure at different positions away from hydraulic fracture surface

    图  8   不同CO2注入量下的地层压力

    Figure  8.   Formation pressure under different CO2 injection

    图  9   能量波及面积与CO2注入量的相关性

    Figure  9.   Correlation curve between energy sweep area and CO2 injection

    图  10   不同CO2注入排量下的地层压力

    Figure  10.   Formation pressure under different CO2 injection displacements

    图  11   不同注入排量下地层压力随注入时间的变化

    Figure  11.   Variation of formation pressure with time under different injection displacements

    图  12   试验井与相邻平台井放喷井段井口压力对比

    Figure  12.   Comparison of wellhead pressure in blowout section of test well and adjacent platform well

    图  13   试验井与相邻平台井百米油层的产油量对比

    Figure  13.   Oil production comparison of 100-meter oil layer between test well and adjacent platform well

    表  1   庆城油田页岩油与国内外典型页岩油特征参数的对比

    Table  1   Characteristic parameter comparison of shale oil in Ordos Basin and other typical shale oil in China and abroad

    特征参数庆城油田国内国外
    准噶尔盆地芦草沟组三塘湖盆地条湖组松辽盆地白垩系北美二叠盆地
    沉积环境湖相湖相湖相湖相浅海相
    埋深/m1 600~2 2002 700~3 9002 000~2 8001 700~2 2002 134~2 895
    油层厚度/m5~1510~135~2010~30400~600
    孔隙度,%6.0~11.08.0~14.68.0~18.05.0~18.08.0~12.0
    渗透率/mD0.11~0.140.010~0.0120.1~0.50.02~0.500.01~1.00
    含油饱和度,%67.7~72.478.0~80.055.0~76.548.0~55.075.0~88.0
    油气比/(m3·t−175~12218~2250~140
    原油黏度/(mPa·s)1.2~2.411.7~21.558.0~83.04.0~8.00.15~0.53
    压力系数0.77~0.841.20~1.600.901.10~1.321.05~1.50
    水平应力差/MPa4~65~91~53~61~3
    脆性指数,%35~4550~5131~5445~60
    下载: 导出CSV
  • [1] 焦方正,邹才能,杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发,2020,47(6):1067–1078.

    JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067–1078.

    [2] 雷群,胥云,才博,等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发,2022,49(1):166–172.

    LEI Qun, XU Yun, CAI Bo, et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 2022, 49(1): 166–172.

    [3] 文家成,胡钦红,杨升宇,等. 渤海湾盆地沧东凹陷孔二段页岩储层特征及页岩油可动性评价[J]. 特种油气藏,2023,30(4):63–70.

    WEN Jiacheng, HU Qinhong, YANG Shengyu, et al. Shale reservoir characteristics and shale oil mobility in member 2 of Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Special Oil & Gas Reservoir, 2023, 30(4): 63–70.

    [4] 郭同政,张晋言,柴婧,等. 基于测录井资料计算页岩含油饱和度与气油比的方法[J]. 石油钻探技术,2023,51(3):126–136.

    GUO Tongzheng, ZHANG Jinyan, CHAI Jing, et al. Methodology of calculating oil saturation and the GOR of shale based on logging data[J]. Petroleum Drilling Techniques, 2023, 51(3): 126–136.

    [5] 彭艳霞,杜玉山,蒋龙,等. 济阳坳陷缓坡带页岩油储层微观孔隙结构及分形特征[J]. 断块油气田,2023,30(4):535–544.

    PENG Yanxia, DU Yushan, JIANG Long, et al. Micropore structure and fractal characteristics of shale oil reservoir in gentle slope zone of Jiyang Depression[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 535–544.

    [6] 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023,51(1):1–8.

    YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1–8.

    [7] 付锁堂,姚泾利,李士祥,等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质,2020,42(5):698–710.

    FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology and Experiment, 2020, 42(5): 698–710.

    [8] 付金华,李士祥,牛小兵,等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发,2020,47(5):870–883.

    FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870–883.

    [9]

    FU Suotang, YU Jian, ZHANG Kuangsheng, et al. Investigation of multistage hydraulic fracture optimization design methods in horizontal shale oil wells in the Ordos Basin[J]. Geofluids, 2020, 2020: 8818903.

    [10]

    ZHANG Kuangsheng, ZHUANG Xiangqi, TANG Meirong, et al. Integrated optimisation of fracturing design to fully unlock the Chang 7 tight oil production potential in Ordos Basin[R]. URTEC-2019-198315.

    [11]

    BAI Xiaohu, ZHANG Kuangsheng, TANG Meirong, et al. Development and application of cyclic stress fracturing for tight oil reservoir in Ordos Basin[R]. SPE 197746,2019.

    [12] 慕立俊,赵振峰,李宪文,等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质,2019,40(3):626–635.

    MU Lijun, ZHAO Zhenfeng, LI Xianwen, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 626–635.

    [13] 吴顺林,刘汉斌,李宪文,等. 鄂尔多斯盆地致密油水平井细分切割缝控压裂试验与应用[J]. 钻采工艺,2020,43(3):53–55.

    WU Shunlin, LIU Hanbin, LI Xianwen, et al. Test and application of subdivision fracture control fracturing for tight oil horizontal wells in Ordos Basin[J]. Drilling & Production Technology, 2020, 43(3): 53–55.

    [14] 胥云,雷群,陈铭,等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发,2018,45(5):874–887.

    XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874–887.

    [15] 张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15.

    ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15.

    [16] 李士祥,牛小兵,柳广弟,等. 鄂尔多斯盆地延长组长7段页岩油形成富集机理[J]. 石油与天然气地质,2020,41(4):719–729.

    LI Shixiang, NIU Xiaobing, LIU Guangdi, et al. Formation and accumulation mechanism of shale oil in the 7th member of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 719–729.

    [17] 付金华,郭雯,李士祥,等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学,2021,32(12):1749–1761.

    FU Jinhua, GUO Wen, LI Shixiang, et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749–1761.

    [18] 李树同,李士祥,刘江艳,等. 鄂尔多斯盆地长7段纯泥页岩型页岩油研究中的若干问题与思考[J]. 天然气地球科学,2021,32(12):1785–1796.

    LI Shutong, LI Shixiang, LIU Jiangyan, et al. Some problems and thoughts on the study of pure shale-type shale oil in the 7th Member of Yanchang Formation in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1785–1796.

    [19] 刘博,徐刚,纪拥军,等. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏,2020,32(6):172–180.

    LIU Bo, XU Gang, JI Yongjun, et al. Practice of volume fracturing and microseismic monitoring technology in horizontal wells of shale oil[J]. Lithologic Reservoirs, 2020, 32(6): 172–180.

    [20] 焦方正. 鄂尔多斯盆地页岩油缝网波及研究及其在体积开发中的应用[J]. 石油与天然气地质,2021,42(5):1181–1188.

    JIAO Fangzheng. FSV estimation and its application to development of shale oil via volume fracturing in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1181–1188.

    [21] 张矿生,唐梅荣,杜现飞,等. 鄂尔多斯盆地页岩油水平井体积压裂改造策略思考[J]. 天然气地球科学,2021,32(12):1859–1866.

    ZHANG Kuangsheng, TANG Meirong, DU Xianfei, et al. Considerations on the strategy of volume fracturing for shale oil horizontal wells in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1859–1866.

    [22]

    TAO L, ZHAO Y, WANG Y, et al. Experimental study on hydration mechanism of shale in the Sichuan Basin, China[R]. ARMA-1159, 2021.

    [23]

    TAO Liang, GUO Jianchun, HALIFU M, et al. A new mixed wettability evaluation method for organic-rich shales[R]. SPE 202466, 2020.

    [24] 郭建春,陶亮,陈迟,等. 川南龙马溪组页岩储层水相渗吸规律[J]. 计算物理,2021,38(5):565–572.

    GUO Jianchun, TAO Liang, CHEN Chi, et al. Water imbibition of Longmaxi Formation shale in the south of Sichuan Basin[J]. Chinese Journal of Computational Physics, 2021, 38(5): 565–572.

    [25] 袁士义,马德胜,李军诗,等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望[J]. 石油勘探与开发,2022,49(4):828–834. doi: 10.11698/PED.20220212

    YUAN Shiyi, MA Desheng, LI Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization[J]. Petroleum Exploration and Development, 2022, 49(4): 828–834. doi: 10.11698/PED.20220212

    [26] 戴厚良,苏义脑,刘吉臻,等. 碳中和目标下我国能源发展战略思考[J]. 石油科技论坛,2022,41(1):1–8.

    DAI Houliang, SU Yinao, LIU Jizhen, et al. Thinking of China’s energy development strategy under carbon neutrality goal[J]. Petroleum Science and Technology Forum, 2022, 41(1): 1–8.

    [27] 袁士义,王强,李军诗,等. 提高采收率技术创新支撑我国原油产量长期稳产[J]. 石油科技论坛,2021,40(3):24–32. doi: 10.3969/j.issn.1002-302x.2021.03.003

    YUAN Shiyi, WANG Qiang, LI Junshi, et al. EOR technological innovation keeps China’s crude oil production stable on long-term basis[J]. Oil Forum, 2021, 40(3): 24–32. doi: 10.3969/j.issn.1002-302x.2021.03.003

    [28] 霍宏博,刘东东,陶林,等. 基于CO2提高采收率的海上CCUS完整性挑战与对策[J]. 石油钻探技术,2023,51(2):74–80.

    HUO Hongbo, LIU Dongdong, TAO Lin, et al. Integrity challenges and countermeasures of the offshore CCUS based on CO2-EOR[J]. Petroleum Drilling Techniques, 2023, 51(2): 74–80.

    [29] 刘合,陶嘉平,孟思炜,等. 页岩油藏CO2提高采收率技术现状及展望[J]. 中国石油勘探,2022,27(1):127–134.

    LIU He, TAO Jiaping, MENG Siwei, et al. Application and prospects of CO2 enhanced oil recovery technology in shale oil reservoir[J]. China Petroleum Exploration, 2022, 27(1): 127–134.

    [30] 黄兴,李响,张益,等. 页岩油储集层二氧化碳吞吐纳米孔隙原油微观动用特征[J]. 石油勘探与开发,2022,49(3):557–564. doi: 10.11698/PED.20210582

    HUANG Xing, LI Xiang, ZHANG Yi, et al. Microscopic production characteristics of crude oil in nano-pores of shale oil reservoirs during CO2 huff and puff[J]. Petroleum Exploration and Development, 2022, 49(3): 557–564. doi: 10.11698/PED.20210582

    [31] 黄兴,倪军,李响,等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报,2020,41(7):853–864. doi: 10.7623/syxb202007007

    HUANG Xing, NI Jun, LI Xiang, et al. Characteristic and influencing factors of CO2 floooding in different microscopic pore stuctures in tight reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 853–864. doi: 10.7623/syxb202007007

    [32] 郎东江,伦增珉,吕成远,等. 页岩油注二氧化碳提高采收率影响因素核磁共振实验[J]. 石油勘探与开发,2021,48(3):603–612.

    LANG Dongjiang, LUN Zengmin, LYU Chengyuan. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603–612.

    [33] 李凤霞,王海波,周彤,等. 页岩油储层裂缝对 CO2 吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术,2022,50(2):38–44.

    LI Fengxia, WANG Haibo, ZHOU Tong, et al. The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38–44.

    [34] 张佳亮,葛洪魁,张衍君,等. 吉木萨尔页岩油注入介质梯级提采实验评价[J]. 石油钻采工艺,2023,45(2):244–251.

    ZHANG Jialiang, GE Hongkui, ZHANG Yanjun, et al. Experimental evaluation on EOR medium grading of shale in Jimusaer Oilfield[J]. Oil Drilling & Production Technology, 2023, 45(2): 244–251.

    [35] 史晓东,孙灵辉,战剑飞,等. 松辽盆地北部致密油水平井二氧化碳吞吐技术及其应用[J]. 石油学报,2022,43(7):998–1006.

    SHI Xiaodong, SUN Linghui, ZHAN Jianfei, et al. Carbon dioxide huff-puff technology and application in tight oil horizontal wells in the northern Songliao Basin[J]. Acta Petrolei Sinica, 2022, 43(7): 998–1006.

    [36] 赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075

    [37] 刘卫彬,徐兴友,刘畅,等. 超临界CO2+水力携砂复合体积压裂工艺对陆相页岩储层的改造机理及效果[J]. 石油学报,2022,43(3):399–409.

    LIU Weibin, XU Xingyou, LIU Chang, et al. The stimulation mechanism and performance analysis of supercritical CO2 and hydraulic sand-carrying composite volume fracturing technology on continental shale reservoirs[J]. Acta Petrolei Sinica, 2022, 43(3): 399–409.

图(13)  /  表(1)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  89
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-08-30
  • 网络出版日期:  2023-09-17
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回