Numerical Simulation of Shale Oil Well Productivity Based on Shale Oil-Water Two-Phase Flow Characteristics
-
摘要:
页岩孔隙结构及固液相互作用复杂,其微观渗流特性加大了页岩油产能预测的难度。为准确评价体积压裂后多尺度孔隙结构发育的页岩油藏产能,基于页岩储层油水两相相渗计算方法和嵌入式离散裂缝模型,考虑页岩真实孔隙结构作用下的微观油水两相渗流特性,形成了考虑页岩体积压裂页岩油藏产能的数值模拟方法。基于页岩储层孔径分布计算油水相渗曲线,结合页岩油藏压裂/生产流程,开展了页岩油藏压裂液空间分布以及油井产能评价模拟分析。结果表明,不同孔径分布下的页岩油水两相相渗曲线存在差异,压裂液主要分布在压裂裂缝、与其相连的天然裂缝以及其周边基质中,在闷井过程中裂缝内压裂液逐渐渗吸进入基质并置换基质中原油,经体积压裂可实现改造区域的整体动用。研究结果可以从微观油水两相渗流特性与宏观产能评价角度为页岩油藏高效开发提供技术支撑。
Abstract:The pore structure of shale is complex, and solid-liquid interaction occurs. In addition, its microscopic flow characteristics increase the difficulty of shale oil productivity prediction. In order to accurately evaluate the productivity of shale oil reservoirs with multi-scale pore structures after volume fracturing, the microscopic multi-phase flow characteristics under the action of real pore structure of shale were considered based on the oil-water two-phase relative permeability calculation method and embedded discrete fracture model (EDFM) of shale reservoirs. As a result, a numerical simulation method for shale oil reservoir productivity considering shale volume fracturing was developed. The oil-water two-phase relative permeability curve was calculated based on the pore size distribution of shale reservoirs, and combined with the fracturing/production process of shale reservoirs, the spatial distribution of fracturing fluid in shale oil reservoirs and the productivity evaluation of oil well were simulated and analyzed. The results show that there are differences in the oil-water two-phase relative permeability curves of shale under different pore size distributions. Fracturing fluids are mainly distributed in fracturing fractures, natural fractures connected with them, and the surrounding matrix. During the process of shut-in, the fracturing fluid in the fracture is gradually imbibed into the matrix, displacing the crude oil in the matrix and realizing the whole utilization of the stimulated area by volume fracturing. The research results can provide technical support for the efficient development of shale oil reservoirs from the perspective of microscopic oil-water two-phase flow characteristics and macroscopic productivity evaluation.
-
-
-
[1] 邹才能,马锋,潘松圻,等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘,2023,30(1):128–142. ZOU Caineng, MA Feng, PAN Songqi, et al. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 2023, 30(1): 128–142.
[2] 杨雷,金之钧. 全球页岩油发展及展望[J]. 中国石油勘探,2019,24(5):553–559. YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553–559.
[3] 佚名. 我国页岩油勘探开发在多领域获重要进展[J]. 天然气勘探与开发,2023,46(1):118. Anon. Shale oil exploration and development in China has made important progress in many fields[J]. Natural Gas Exploration and Development, 2023, 46(1): 118.
[4] 于学亮,胥云,翁定为,等. 页岩油藏 “密切割” 体积改造产能影响因素分析[J]. 西南石油大学学报(自然科学版),2020,42(3):132–143. YU Xueliang, XU Yun, WENG Dingwei, et al. Factors influencing the productivity of the multi-fractured shale oil reservoir with tighter clusters[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(3): 132–143.
[5] 倪华峰,杨光,张延兵. 长庆油田页岩油大井丛水平井钻井提速技术[J]. 石油钻探技术,2021,49(4):29–33. NI Huafeng, YANG Guang, ZHANG Yanbing. ROP improvement technologies for large-cluster horizontal shale oil wells in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 29–33.
[6] 欧阳伟平,张冕,孙虎,等. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术,2021,49(4):143–149. OUYANG Weiping, ZHANG Mian, SUN Hu, et al. Numerical simulation of oil displacement by fracturing imbibition in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143–149.
[7] 王继伟,曲占庆,郭天魁,等. 考虑压裂液渗吸的压后压裂液返排的数值模拟[J]. 深圳大学学报(理工版),2023,40(1):56–65. WANG Jiwei, QU Zhanqing, GUO Tiankui, et al. Numerical simulation of post-fracturing flowback considering fracturing fluid imbibition[J]. Journal of Shenzhen University(Science & Engineering), 2023, 40(1): 56–65.
[8] 徐润滋,杨胜来,王吉涛,等. 高温高压下陆相致密油藏非稳态压裂液渗吸机理研究[J]. 油气地质与采收率,2023,30(3):94–103. XU Runzi, YANG Shenglai, WANG Jitao, et al. Study on unsteady imbibition mechanism of fracturing fluid in tight continental reservoirs under high temperature and high pressure[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 94–103.
[9] WANG Jinxun, DONG Mingzhe, YAO Jun. Calculation of relative permeability in reservoir engineering using an interacting triangular tube bundle model[J]. Particuology, 2012, 10(6): 710–721. doi: 10.1016/j.partic.2012.05.003
[10] LI Ran, CHEN Zhangxin, WU Keliu, et al. A fractal model for gas-water relative permeability curve in shale rocks[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103417. doi: 10.1016/j.jngse.2020.103417
[11] SU Yuliang, XU Jilong, WANG Wendong, et al. Relative permeability estimation of oil−water two-phase flow in shale reservoir[J]. Petroleum Science, 2022, 19(3): 1153–1164. doi: 10.1016/j.petsci.2021.12.024
[12] 何利,肖阳,孙宜成,等. 车21井区裂缝性油藏地质建模与工程设计一体化研究[J]. 特种油气藏,2021,28(5):23–29. HE Li, XIAO Yang, SUN Yicheng, et al. On integration of geological modeling and engineering design of fractured oil reservoirs in Well Block Che 21[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 23–29.
[13] 孟勇,贾庆升,张潦源,等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术,2021,49(4):130–138. MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130–138.
[14] 何吉祥,徐有杰,高阳,等. 裂缝性致密油藏多级压裂水平井试井模型[J]. 断块油气田,2021,28(2):241–246. HE Jixiang, XU Youjie, GAO Yang, et al. Well test model of multi-stage fractured horizontal well in fractured tight reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 241–246.
[15] 赵国翔,姚约东,王链,等. 页岩油藏微尺度流动特征及应力敏感性分析[J]. 断块油气田,2021,28(2):247–252. ZHAO Guoxiang, YAO Yuedong, WANG Lian, et al. Microscale transport behaviors of shale oil and stress sensitivity analysis[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 247–252.
[16] 李江,陈先超,高平,等. 考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法[J]. 石油钻探技术,2021,49(3):111–116. doi: 10.11911/syztjs.2021032 LI Jiang, CHEN Xianchao, GAO Ping, et al. A pseudo-steady-state productivity prediction method for fractured carbonate gas wells considering stress-sensitivity effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111–116. doi: 10.11911/syztjs.2021032
[17] 李虹,于海洋,杨海烽,等. 裂缝性非均质致密储层自适应应力敏感性研究[J]. 石油钻探技术,2022,50(3):99–105. LI Hong, YU Haiyang, YANG Haifeng, et al. Adaptive stress sensitivity study of fractured heterogeneous tight reservoir[J]. Petroleum Drilling Techniques, 2022, 50(3): 99–105.
[18] LEE S H, LOUGH M F, JENSEN C L. Hierarchical modeling of flow in naturally fractured formations with multiple length scales[J]. Water Resources Research, 2001, 37(3): 443–455. doi: 10.1029/2000WR900340
[19] 刘礼军,姚军,孙海,等. 考虑启动压力梯度和应力敏感的页岩油井产能分析[J]. 石油钻探技术,2017,45(5):84–91. LIU Lijun, YAO Jun, SUN Hai, et al. The effect of threshold pressure gradient and stress sensitivity on shale oil reservoir productivity[J]. Petroleum Drilling Techniques, 2017, 45(5): 84–91.
[20] BAI Yuhu, LIU Lijun, FAN Weipeng, et al. Coupled compositional flow and geomechanics modeling of fractured shale oil reservoir with confined phase behavior[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107608. doi: 10.1016/j.petrol.2020.107608
[21] 杨清立,杨正明,王一飞,等. 特低渗透油藏渗流理论研究[J]. 钻采工艺,2007,30(6):52–54. YANG Qingli, YANG Zhengming, WANG Yifei, et al. Study on flow theory in ultra-low permeability oil reservoir[J]. Drilling & Production Technology, 2007, 30(6): 52–54.
[22] LIU Lijun, HUANG Zhaoqin, YAO Jun, et al. Simulating two-phase flow and geomechanical deformation in fractured karst reservoirs based on a coupled hydro-mechanical model[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104543. doi: 10.1016/j.ijrmms.2020.104543
[23] 姚军,刘礼军,孙海,等. 复杂裂缝性致密油藏注水吞吐数值模拟及机制分析[J]. 中国石油大学学报(自然科学版),2019,43(5):108–117. YAO Jun, LIU Lijun, SUN Hai, et al. Numerical simulation and mechanism analysis of water huff and puff process in complex fractured tight oil reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5): 108–117.
-
期刊类型引用(3)
1. 刘锴沅. 连续管套管除垢空化射流喷头优化设计与应用. 石油机械. 2024(02): 44-49 . 百度学术
2. 周照恒,李玉星,林敏,郭宏帅,王建夫. 盐穴储气库注采气井脖颈收缩原因及预防治理措施. 油气储运. 2024(11): 1313-1319 . 百度学术
3. 李朝阳,陶立波,张跃,刘威,汲广麟,王俊博. 装有延长抗磨损时间和减缓压力衰减的硬质合金喷嘴清洗管井工具. 石油钻采工艺. 2024(03): 386-394 . 百度学术
其他类型引用(2)