渤中26-6油田发现井钻井设计与施工

马英文, 杨进, 李文龙, 徐鲲, 谢涛, 杨保健

马英文,杨进,李文龙,等. 渤中26-6油田发现井钻井设计与施工[J]. 石油钻探技术,2023, 51(3):9-15. DOI: 10.11911/syztjs.2023075
引用本文: 马英文,杨进,李文龙,等. 渤中26-6油田发现井钻井设计与施工[J]. 石油钻探技术,2023, 51(3):9-15. DOI: 10.11911/syztjs.2023075
MA Yingwen, YANG Jin, LI Wenlong, et al. Drilling design and construction of a discovery well in Bozhong 26-6 Oilfield [J]. Petroleum Drilling Techniques,2023, 51(3):9-15. DOI: 10.11911/syztjs.2023075
Citation: MA Yingwen, YANG Jin, LI Wenlong, et al. Drilling design and construction of a discovery well in Bozhong 26-6 Oilfield [J]. Petroleum Drilling Techniques,2023, 51(3):9-15. DOI: 10.11911/syztjs.2023075

渤中26-6油田发现井钻井设计与施工

基金项目: 国家科技重大专项“大型油气田及煤层气”子课题“渤海油田高效开发示范工程”(编号:2016ZX05058)、中海石油(中国)有限公司科技项目“渤海油田 3000 万吨持续稳产关键技术研究”子课题“渤海边际油田高效开发钻完井配套技术”(编号:CNOOC-KJ135 ZDXM 36 TJ06TJ)资助
详细信息
    作者简介:

    马英文(1974—),山东滨州人,男,1998年毕业于石油大学(华东)石油工程专业,2012年获中国石油大学(北京)油气井工程专业硕士学位,正高级工程师,中国石油大学(北京)在读博士研究生,主要从事海洋钻井完井技术研究与相关管理工作。系本刊编委。E-mail:mayw@cnooc.com.cn。

    通讯作者:

    李文龙,liwl38@cnooc.com.cn

  • 中图分类号: TE22

Drilling Design and Construction of a Discovery Well in Bozhong 26-6 Oilfield

  • 摘要:

    渤海油田渤中26-6构造太古界油气运聚条件优越,且潜山长期遭受剥蚀,具备良好的储层条件,非常有利于成藏。为明确该构造东高点太古界潜山储量,探索潜山成藏模式,在该构造部署了探井26-6-2井,主要目的层为太古界潜山,但该井地质条件复杂,钻井难度大。分析了该井主要钻遇岩性及钻井技术难点,认为该井存在漏失风险高、井壁易失稳、易发生井斜和井控风险高等施工难题。为此,从井身结构、钻头及提速工具、钻具组合、钻井液等方面对渤中26-6-2井进行了一系列优化设计。现场施工中,为了达到风化壳与内幕分隔测试的目的,又创新设计,增加了一开次,顺利在潜山内幕下入尾管并成功封固管鞋。渤中26-6-2井测试获得工业油气流,发现了渤中26-6亿吨级油田。相关钻井技术对渤海油田后续钻井设计及现场施工具有指导意义。

    Abstract:

    The Bozhong 26-6 Structure in Bohai Oilfield has a superior background of oil and gas accumulation in the Archaean group, and the buried hill is subject to long-term erosion, which thus has good reservoir conditions for facilitating reservoir formation. In order to clarify the reserves of the Archean buried hill at the east high point of the structure and explore the buried hill accumulation model, it was decided to drill Well 26-6-2 in this structure, and the main target layer was the Archean buried hill. However, the geological condition of Well Bozhong 26-6-2 is complicated, and drilling is thus difficult. Therefore, the main drilling lithology and drilling technological difficulties of the well were analyzed, and it was considered that the well was faced with some problems such as a high risk of leakage, easy wellbore instability, easy well deviation, and high risk for well control. To this end, a series of optimization designs for the well were carried out from the aspects of the casing program, drill bit, acceleration tool, bottom hole assembly, and drilling fluid. During the on-site construction, in order to separate the weathered crust and the inner cover in tests, the design had been innovatively updated, and a one-section was added. The liner smoothly entered the inner cover of the buried hill and successfully sealed the pipe shoes. Finally, the test of Well Bozhong 26-6-2 obtained industrial oil flow, and a Bozhong 26-6 Oilfield of a hundred million tons was discovered. The relevant drilling technologies can guide the subsequent drilling design and on-site construction of Bohai Oilfield.

  • 图  1   渤中26-6-2井地层三压力剖面

    Figure  1.   Formation three-pressure profile of Well Bozhong 26-6-2

    图  2   渤中26-6-2井井身结构设计结果

    Figure  2.   Casing program design of Well Bozhong 26-6-2

    图  3   扭转冲击和复合冲击条件下PDC钻头切削力

    Figure  3.   Tangential forces of PDC bit cutters under torsional impact and compound impact conditions

    图  4   渤中26-6-2井变更设计后的井身结构

    Figure  4.   Casing program of Well Bozhong 26-6-2 after design modification

    表  1   渤中26-6-2井各开次钻具组合设计结果

    Table  1   Bottom hole assembly design for each section of Well Bozhong 26-6-2

    井眼直径/ mm钻具组合功能
    660.4 ϕ660.4 mm PDC钻头+ϕ203.2 mm钻铤×3根+ϕ203.2 mm(挠性接头+震击器)+变扣+ϕ139.7 mm加重钻杆×14根一开钻进
    406.4 ϕ406.4 mm PDC钻头+ϕ285.8 mm螺杆(0°/403.0 mm)+ ϕ241.3 mm减振推力器+变扣+ϕ400.0 mm稳定器+ϕ203.2 mm浮阀+ϕ203.2 mm非磁钻铤+随钻测量工具+ϕ203.2 mm非磁钻铤+ϕ203.2 mm钻铤×4根+ϕ203.2 mm(挠性接头+震击器)+变扣+ϕ139.7 mm加重钻杆+堵漏短节+ϕ139.7 mm加重钻杆×13根二开钻进
     ϕ406.4 mm牙轮钻头+变扣+ϕ203.2 mm浮阀+ϕ203.2 mm钻铤×2根+ϕ406.4 mm稳定器+ϕ203.2 mm钻铤×4根+ϕ203.2 mm(挠性接头+震击器)+变扣+ϕ139.7 mm加重钻杆×14根二开通井
    311.1 ϕ311.1 mm PDC钻头+ϕ244.5 mm螺杆(0.75°/305.0 mm)+ϕ228.6 mm 钻铤+变扣+ϕ308.0 mm稳定器+ϕ203.2 mm浮阀+ϕ203.2 mm非磁钻铤+随钻测量工具+ϕ203.2 mm非磁钻铤+ϕ203.2 mm 钻铤×6根+ϕ203.2 mm(挠性接头+震击器)+变扣+ϕ139.7 mm加重钻杆×14根三开钻进
     ϕ311.1 mm PDC钻头+ϕ228.6 mm垂导工具+ϕ244.5 mm螺杆(0°/308.0 mm)+ϕ203.2 mm非磁钻铤+随钻测量工具+ϕ203.2 mm非磁钻铤+ϕ203.2 mm浮阀+ϕ203.2 mm钻铤×6根+ϕ203.2 mm(挠性接头+震击器)+堵漏短节+变扣+ϕ139.7 mm加重钻杆×14根三开钻进(备用)
     ϕ311.1 mm牙轮钻头+变扣+ϕ203.2 mm 钻铤×2根+ϕ311.1 mm稳定器+ϕ203.2 mm浮阀+ϕ203.2 mm钻铤×4+ϕ203.2 mm(挠性接头+震击器)+变扣+ϕ139.7 mm加重钻杆×14根三开通井
    215.9 ϕ215.9 mm PDC钻头+ϕ165.1 mm复合冲击提速工具+变扣+ϕ165.1 mm浮阀(不带孔)+ϕ165.1 mm钻铤×15根+ϕ165.1 mm液压震击器+ϕ127.0 mm加重钻杆×1+ϕ165.1 mm投入式止回阀+ϕ127.0 mm加重钻杆×13根四开钻进
     ϕ215.9 mm PDC钻头+ϕ171.5 mm垂直导向+ϕ171.5 mm螺杆(0°/212.0 mm)+ϕ203.2 mm非磁钻铤+随钻测量工具+ϕ203.2 mm非磁钻铤+ϕ165.1 mm钻铤+ϕ165.1 mm浮阀+ϕ215.9 mm稳定器+ϕ165.1 mm钻铤×16根+ϕ165.1 mm(挠性接头+震击器)+ϕ127.0 mm加重钻杆×1根+ϕ165.1 mm投入式止回阀+ϕ127.0 mm加重钻杆×13根四开钻进
     ϕ215.9 mm牙轮钻头+变扣+ϕ165.1 mm钻铤+ϕ165.1 mm浮阀+ϕ215.9 mm稳定器+ϕ165.1 mm钻铤+ϕ165.1 mm(挠性接头+震击器)+ϕ127.0 mm加重钻杆×1根+ϕ165.1 mm投入式止回阀+ϕ127.0 mm加重钻杆×13根四开通井
    下载: 导出CSV

    表  2   渤中26-6-2井各井段钻井液设计结果

    Table  2   Drilling fluid design for each well section of Well Bozhong 26-6-2

    井径/mm井段/m钻井液密度/(kg·L−1漏斗黏度/s塑性黏度/(mPa·s)动切力/Pa滤失量/mL
    660.4泥面~200海水/膨润土浆1.05>80
    406.4200~1 200膨润土浆/水基环保型钻井液
    (聚合物钻井液)
    1.05~1.1530~65<355~155~10
    311.11 200~3 688水基环保型钻井液
    (聚合物钻井液/PEM)
    1.15~1.3540~60<356~153~8
    215.93 688~4 685水基环保型钻井液(PDF-HSD)1.05~1.2040~65<258~15<6
    下载: 导出CSV
  • [1] 陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10.

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.

    [2] 袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27.

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27.

    [3] 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1–8.

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar Basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5): 1–8.

    [4] 杨沛,刘洪涛,李宁,等. 塔里木油田超深井钻井设计及优化技术:以亚洲最深井轮探1井为例[J]. 中国石油勘探,2021,26(3):126–135. doi: 10.3969/j.issn.1672-7703.2021.03.012

    YANG Pei, LIU Hongtao, LI Ning, et al. Drilling design and optimization technology of ultra-deep wells in the Tarim Oilfield: A case study of Well Luntan 1, the deepest well in Asia[J]. China Petroleum Exploration, 2021, 26(3): 126–135. doi: 10.3969/j.issn.1672-7703.2021.03.012

    [5] 王建云,韩涛,赵宽心,等. 塔深5井超深层钻井关键技术[J]. 石油钻探技术,2022,50(5):27–33.

    WANG Jianyun, HAN Tao, ZHAO Kuanxin, et al. Key drilling technologies for the ultra-deep Well Tashen 5[J]. Petroleum Drilling Techniques, 2022, 50(5): 27–33.

    [6] 于玄昊. 元坝102-2H井超深水平井钻井技术应用[J]. 化工管理,2013(12):124.

    YU Xuanhao. Application of ultra-deep horizontal well drilling technology in Well Yuanba 102-2H[J]. Chemical Engineering Management, 2013(12): 124.

    [7] 李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.

    [8] 邓建明,马英文. 渤海中深层天然气田钻完井关键技术现状及展望[J]. 石油钻采工艺,2018,40(6):677–683.

    DENG Jianming, MA Yingwen. Status and prospect of key drilling and completion technologies used in middle-deep natural gas fields of the Bohai Sea[J]. Oil Drilling & Production Technology, 2018, 40(6): 677–683.

    [9] 薛懿伟,陈立强,徐鲲,等. 渤中19-6大气田深部潜山硬地层钻井提速技术研究与应用[J]. 中国海上油气,2020,32(4):140–146.

    XUE Yiwei, CHEN Liqiang, XU Kun, et al. Research and application of ROP improvement technology in deep buried hill hard formations of BZ19-6 large gas field[J]. China Offshore Oil and Gas, 2020, 32(4): 140–146.

    [10] 施和生,王清斌,王军,等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探,2019,24(1):36–45.

    SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong Sag[J]. China Petroleum Exploration, 2019, 24(1): 36–45.

    [11] 吴怡,谢仁军,刘书杰,等. 考虑温度效应的高温高压直井井壁稳定性规律[J]. 断块油气田,2019,26(2):253–256. doi: 10.6056/dkyqt201902025

    WU Yi, XIE Renjun, LIU Shujie, et al. Wellbore stability law of high temperature and high pressure vertical wells considering temperature effect[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 253–256. doi: 10.6056/dkyqt201902025

    [12] 韩正波,刘厚彬,张靖涛,等. 深层脆性页岩力学性能及井壁稳定性研究[J]. 特种油气藏,2020,27(5):167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026

    HAN Zhengbo, LIU Houbin, ZHANG Jingtao, et al. Research on the mechanical properties and borehole stability of deep brittle shale[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026

    [13] 李磊,杨进,刘宝生,等. 渤海渤中区域深井井身结构优化[J]. 石油钻采工艺,2020,42(5):569–572.

    LI Lei, YANG Jin, LIU Baosheng, et al. Casing program optimization of deep wells in the central Bohai area[J]. Oil Drilling & Production Technology, 2020, 42(5): 569–572.

    [14] 张磊, 窦蓬, 刘海龙, 等. 渤中区域中深层探井井身结构优化设计[C]//2020油气田勘探与开发国际会议 (IFEDC2020) 论文集. 成都: 陕西省石油学会, 2020: 1-2.

    ZHANG Lei, DOU Peng, LIU Hailong, et al. Wellbore structure optimization design for medium-deep exploration wells in Bozhong area[C]//Proceedings of the 2020 International Conference on Oil and Gas Field Exploration and Development (IFEDC2020). Chengdu: Shaanxi Petroleum Institute, 2020: 1-2.

    [15] 孔维升,李晓明,韩成福,等. 致密气藏二开结构水平井钻井液体系及现场应用[J]. 钻井液与完井液,2023,40(1):73–81.

    KONG Weisheng, LI Xiaoming, HAN Chengfu, et al. The field application of a drilling fluid for a two-interval horizontal well penetrating tight gas reservoir[J]. Drilling Fluid & Completion Fluid, 2023, 40(1): 73–81.

    [16] 安锦涛,李军,黄洪林,等. 考虑井眼清洁条件下的小井眼钻井液性能优化研究[J]. 钻井液与完井液,2022,39(6):700–706.

    AN Jintao, LI Jun, HUANG Honglin, et al. Performance optimization of slim-hole drilling fluids under hole cleaning condition[J]. Drilling Fluid & Completion Fluid, 2022, 39(6): 700–706.

  • 期刊类型引用(8)

    1. 陈浩,孙文常,邹顺良. FAST阵列仪器三相流产出剖面测试技术应用研究. 江汉石油职工大学学报. 2024(01): 23-25+32 . 百度学术
    2. 黄卫国. 涪陵地区页岩气易碎地层随钻识别研究. 江汉石油职工大学学报. 2024(03): 20-23 . 百度学术
    3. 商永涛,林新宇,李相亮,李辉. 基于机器学习的压裂参数优化方法研究及应用. 石油化工应用. 2022(08): 33-38 . 百度学术
    4. 李红岩,王鹏涛,郭世炎,刘斌,张献喻,赵宇璇. 水基钻井液用新型页岩抑制剂的制备及性能研究. 当代化工. 2021(02): 418-421 . 百度学术
    5. 舒志国,刘莉,梁榜,陆亚秋,郑爱维,包汉勇. 基于物质平衡原理的页岩气井产能评价方法. 天然气地球科学. 2021(02): 262-267 . 百度学术
    6. 谭判,张祥,李明军,刘斌,蒋勇兵,蔡健博. 长水平段页岩气井旋转导向随钻技术应用试验. 江汉石油职工大学学报. 2020(01): 52-54 . 百度学术
    7. 陈四平,谭判,石文睿,赵红燕. 涪陵页岩气优质储层测井综合评价方法. 石油钻探技术. 2020(04): 131-138 . 本站查看
    8. 胡琴,李志强,任航. 模糊正交法在弧形盘式齿破岩性能评价中的应用. 断块油气田. 2019(03): 389-393 . 百度学术

    其他类型引用(4)

图(4)  /  表(2)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  147
  • PDF下载量:  138
  • 被引次数: 12
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-05-19
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回