基于优化变分模态分解和互相关的钻井液脉冲信号处理方法

亢武臣, 杨书博, 赵琪琪, 黄豪彩, 丁士东

亢武臣,杨书博,赵琪琪,等. 基于优化变分模态分解和互相关的钻井液脉冲信号处理方法[J]. 石油钻探技术,2023, 51(3):144-151. DOI: 10.11911/syztjs.2023068
引用本文: 亢武臣,杨书博,赵琪琪,等. 基于优化变分模态分解和互相关的钻井液脉冲信号处理方法[J]. 石油钻探技术,2023, 51(3):144-151. DOI: 10.11911/syztjs.2023068
KANG Wuchen, YANG Shubo, ZHAO Qiqi, et al. A pulse signal processing method for drilling fluid based on optimal variational mode decomposition and cross-correlation [J]. Petroleum Drilling Techniques,2023, 51(3):144-151. DOI: 10.11911/syztjs.2023068
Citation: KANG Wuchen, YANG Shubo, ZHAO Qiqi, et al. A pulse signal processing method for drilling fluid based on optimal variational mode decomposition and cross-correlation [J]. Petroleum Drilling Techniques,2023, 51(3):144-151. DOI: 10.11911/syztjs.2023068

基于优化变分模态分解和互相关的钻井液脉冲信号处理方法

基金项目: 国家自然科学基金项目“海相深层高温高压钻完井工程基础理论及控制方法” (编号:U19B6003-05)、国家重点研发计划项目“复杂油气智能钻井理论与方法”(编号:2019YFA0708300)联合资助
详细信息
    作者简介:

    亢武臣(1980—),男,山东德州人,2003年毕业于大庆石油学院自动化专业,2012年获中国石油大学(华东)计算机技术专业工程硕士学位,高级工程师,主要从事随钻测控、海洋工程等方面的研究工作。E-mail: kangwc.sripe@sinopec.com。

  • 中图分类号: TN911.7

A Pulse Signal Processing Method for Drilling Fluid Based on Optimal Variational Mode Decomposition and Cross-Correlation

  • 摘要:

    随着油气勘探开发不断深入,钻井技术逐渐向深井、超深井和小井眼方向发展,对钻井液脉冲信号处理提出了更高的要求。通过分析脉冲位置调制编码的基本原理,提出了一种基于优化变分模态分解和互相关的钻井液脉冲信号处理方法,并利用在苏北地区某页岩油井采集的钻井液脉冲信号验证了该方法的可行性。基于优化变分模态分解算法,实现了在低信噪比条件下有用信号的有效提取;基于同步头相关器对去噪后的信号进行互相关处理,实现了数据帧起始位置的可靠计算;基于数据块相关器对数据块内波形进行互相关处理,实现了码值的准确获取。与传统的钻井液脉冲信号处理方法相比,上述方法具有可靠性高和误码率低的特点,能够很好地满足复杂井眼环境下钻井液脉冲信号处理的需求。

    Abstract:

    With oil & gas exploration and development going ever deeper, drilling technologies are gradually advancing towards deep and ultra-deep wells and slim holes, which puts forward high requirements for the processing of pulse signals of drilling fluid. By analyzing the principle of pulse position modulation coding, a pulse signal processing method was proposed for drilling fluid based on optimal variational mode decomposition (VMD) and cross-correlation. And the feasibility of the method was later verified by using pulse signals of drilling fluid collected from a shale oil well in the northern Jiangsu region. Through the optimal VMD algorithm, the useful signals were effectively extracted under low signal-to-noise ratio conditions; based on the synchronization correlator, the de-noised signals were cross-correlated to reliably calculate the starting position of the data frame; according to the data block correlator, the waveforms in the data block were cross-correlated to accurately acquire the code values. Compared with the traditional pulse signal processing methods for drilling fluid, the proposed method exhibits characteristics of high reliability and low bit error rate, and it can well satisfy the needs of pulse signal processing for drilling fluid in complex wellbore environments.

  • 图  1   钻井液脉冲原始信号

    Figure  1.   Original pulse signal of drilling fluid

    图  2   经过带通滤波处理的钻井液脉冲信号(带通滤波器的通带频率0.1~0.4 Hz)

    Figure  2.   Pulse signal of drilling fluid after bandpass filtering (the passband frequency of the bandpass filter is 0.1 ~ 0.4 Hz)

    图  3   钻井液脉冲原始信号的变分模态分解结果(K=8,α=1 000)

    Figure  3.   VMD results of original pulse signal of drilling fluid (K=8,α=1 000)

    图  4   带通滤波和优化VMD去噪效果对比

    Figure  4.   Comparison of de-noising effects between bandpass filtering and optimal VMD

    图  5   通过设定阈值去除杂波效果示意

    Figure  5.   Clutter removal effects through threshold setting

    图  6   15.3~26.3 s范围内3个连续脉冲相邻波峰之间的时间间隔

    Figure  6.   Time interval between adjacent wave peaks of three continuous pulses in the range of 15.3 ~ 26.3 s

    图  7   理论同步头相关器波形

    Figure  7.   Waveform of theoretical synchronization correlator

    图  8   理论同步头相关器与去噪后信号通过互相关处理得到的波形

    Figure  8.   Waveforms obtained by cross-correlation between the theoretical synchronization correlator and the de-noised signals

    图  9   数据块划分结果

    Figure  9.   Partition results of data blocks

    图  10   理论数据块相关器波形

    Figure  10.   Waveforms of theoretical data block correlators

    图  11   理论数据块相关器与各数据块内去噪后的信号通过互相关处理得到的曲线

    Figure  11.   Curves obtained by cross-correlation between theoretical data block correlators and the de-noised signals in data blocks

    表  1   数据序列编码

    Table  1   Coding of data sequence

    序列号 参数名称 位数 量程/API 脉冲数 精度/API
    1 GAMMA 8 0~500 2 ±0.977
    2 GAMMA 8 0~500 2 ±0.977
    3 GAMMA 8 0~500 2 ±0.977
    下载: 导出CSV
  • [1] 高文凯,窦修荣,闫国兴. 随钻声波传输的信道特性研究[J]. 石油钻探技术,2013,41(4):27–31.

    GAO Wenkai, DOU Xiurong, YAN Guoxing. Channel characteristics of acoustic telemetry while drilling[J]. Petroleum Drilling Techniques, 2013, 41(4): 27–31.

    [2]

    YAN Zhidan, XU Wenyi, AI Chunwei, et al. Parametric study on pump noise processing method of continuous wave mud pulse signal based on dual-sensor[J]. Journal of Petroleum Science and Engineering, 2019, 178: 987–998. doi: 10.1016/j.petrol.2019.04.018

    [3]

    QU Fengzhong, JIANG Qin, JIN Guozheng, et al. Mud pulse signal demodulation based on support vector machines and particle swarm optimization[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107432. doi: 10.1016/j.petrol.2020.107432

    [4] 梁耀. 旋转导向系统信号传输与闭环控制关键技术研究[D]. 北京: 中国石油大学(北京), 2020.

    LIANG Yao. Research on the key technology of RSS’s signal transmission and closed loop control[D]. Beijing: China University of Petroleum(Beijing), 2020.

    [5] 梁耀,李传伟,李安宗,等. 高速泥浆脉冲遥传系统研制及应用[J]. 西安石油大学学报(自然科学版),2019,34(6):93–97.

    LIANG Yao, LI Chuanwei, LI Anzong, et al. Development and application of high-speed mud pulse signal transmission system[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2019, 34(6): 93–97.

    [6] 孙欢,朱明明,张勤,等. 长庆油田致密气水平井超长水平段安全钻井完井技术[J]. 石油钻探技术,2022,50(5):14–19. doi: 10.11911/syztjs.2022095

    SUN Huan, ZHU Mingming, ZHANG Qin, et al. Safe drilling and completion technologies for ultra-long horizontal section of tight gas horizontal wells in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 14–19. doi: 10.11911/syztjs.2022095

    [7] 李金蔓,孙金声,霍宏博,等. 物联网技术在海洋钻完井中的应用[J]. 石油钻采工艺,2022,44(2):233–240. doi: 10.13639/j.odpt.2022.02.015

    LI Jinman, SUN Jinsheng, HUO Hongbo, et al. Applications of internet of things in offshore well drilling/completion[J]. Oil Drilling & Production Technology, 2022, 44(2): 233–240. doi: 10.13639/j.odpt.2022.02.015

    [8] 张浩,毕雪亮,刘维凯,等. EM-MWD信号在钻柱中传输的影响因素研究[J]. 石油钻探技术,2021,49(6):125–130.

    ZHANG Hao, BI Xueliang, LIU Weikai, et al. Investigation of the factors that influence EM-MWD signal transmission in drill strings[J]. Petroleum Drilling Techniques, 2021, 49(6): 125–130.

    [9] 李艳军. 随钻测量系统泥浆脉冲解码及地面通信单元的设计与实现[D]. 北京: 北京航空航天大学, 2013.

    LI Yanjun. Design and implementation of the mud pulse decoding and the ground communication unit on the MWD system[D]. Beijing: Beihang University, 2013.

    [10] 段友祥,张洋弘,李洪强,等. 基于可信度分析的钻井液脉冲信号识别方法[J]. 石油钻探技术,2018,46(3):120–126.

    DUAN Youxiang, ZHANG Yanghong, LI Hongqiang, et al. A new drilling fluid pulse signal identification method based on credibility analysis[J]. Petroleum Drilling Techniques, 2018, 46(3): 120–126.

    [11] 胡永建,黄衍福,李显义. 钻井液脉冲信号自动去噪与识别算法[J]. 石油勘探与开发,2019,46(2):378–384.

    HU Yongjian, HUANG Yanfu, LI Xianyi. Automatic de-noising and recognition algorithm for drilling fluid pulse signal[J]. Petroleum Exploration and Development, 2019, 46(2): 378–384.

    [12] 乔宗超,唐露新,刘海. 自适应滤波算法消除泥浆脉冲信号中的泵冲噪声[J]. 仪器仪表学报,2016,37(7):1477–1484.

    QIAO Zongchao, TANG Luxin, LIU Hai. Adaptive filtering algorithm for cancelling the pump noise in the mud pulse signal[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1477–1484.

    [13] 贾梦之,耿艳峰,闫宏亮,等. 高速泥浆脉冲数据传输技术综述[J]. 仪器仪表学报,2018,39(12):160–170.

    JIA Mengzhi, GENG Yanfeng, YAN Hongliang, et al. Review of high-speed mud pulse telemetry technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 160–170.

    [14] 张祝军. 摆动式连续波泥浆脉冲通信系统中的信道特性与消噪技术研究[D]. 杭州: 浙江大学, 2018.

    ZHANG Zhujun. Signal processing and noise cancellation techniques for oscillatory continuous wave mud pulse telemetry[D]. Hangzhou: Zhejiang University, 2018.

    [15] 郭光明. 随钻通信信道估计及信道质量评估方法研究与实现[D]. 成都: 电子科技大学, 2022.

    GUO Guangming. Research and implementation of channel estimation and channel quality assessment method for communication while drilling[D]. Chengdu: University of Electronic Science and Technology of China, 2022.

    [16] 冉茂霞,黄沁元,刘鑫,等. 基于优化变分模态分解的磁瓦内部缺陷检测[J]. 浙江大学学报(工学版),2020,54(12):2158–2168.

    RAN Maoxia, HUANG Qinyuan, LIU Xin, et al. Internal defect detection of arc magnets based on optimized variational mode decomposition[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(12): 2158–2168.

    [17] 邓红卫,申一鹏. 基于变分模态分解和粒子群算法的微震信号降噪方法[J]. 矿冶工程,2021,41(1):7–10. doi: 10.3969/j.issn.0253-6099.2021.01.002

    DENG Hongwei, SHEN Yipeng. Noise reduction method for microseismic signal based on variational mode decomposition and particle swarm algorithm[J]. Mining and Metallurgical Engineering, 2021, 41(1): 7–10. doi: 10.3969/j.issn.0253-6099.2021.01.002

    [18] 施晶,朱明,沈华,等. 基于VMD和小波阈值的水听器信号去噪方法[J]. 传感技术学报,2020,33(7):1003–1012. doi: 10.3969/j.issn.1004-1699.2020.07.013

    SHI Jing, ZHU Ming, SHEN Hua, et al. Denoising method of hydrophone signal based on VMD and wavelet threshold[J]. Chinese Journal of Sensors and Actuators, 2020, 33(7): 1003–1012. doi: 10.3969/j.issn.1004-1699.2020.07.013

    [19] 李安宗,李传伟,梁耀,等. 密勒码在随钻测井高速泥浆脉冲遥测系统中的应用[J]. 测井技术,2015,39(1):78–82. doi: 10.16489/j.issn.1004-1338.2015.01.016

    LI Anzong, LI Chuanwei, LIANG Yao, et al. Study on Miller code technology for high data rate mud pulser system in LWD[J]. Well Logging Technology, 2015, 39(1): 78–82. doi: 10.16489/j.issn.1004-1338.2015.01.016

    [20] 彭轶旋. 连续波泥浆脉冲器信号的滤波与解码技术研究[D]. 青岛: 中国石油大学(华东), 2018.

    PENG Yixuan. Research on the filtering and decoding technology of continuous wave mud pulser signal[D]. Qingdao: China University of Petroleum(East China), 2018.

  • 期刊类型引用(10)

    1. 周涛,侯红意,陶亮,艾超. 渤海油田注水井环空保护封隔器的研制与应用. 工程机械. 2022(03): 96-104+13 . 百度学术
    2. 杜福云,刘国振,郭雯霖,张立波,郑金中,陈磊,李英松. 高性能注水井生产封隔器研制与试验. 机械工程师. 2021(05): 142-144 . 百度学术
    3. 李顺,贺启强,周大志,寸锡宏,任兆林,刘艳霞. 注水井环空带压统计分析及治理改进方向. 当代石油石化. 2021(05): 26-28 . 百度学术
    4. 韩祥海,平恩顺,安小萍,王林,贺燕飞,王志民,黄峰. 带压投送井口保护装置的研制及应用. 钻采工艺. 2021(04): 86-89 . 百度学术
    5. 宋辉辉,任从坤,任兆林,张福涛,田俊,刘艳霞. 海上油田分层防砂分层注水高效集成技术. 石油钻采工艺. 2021(03): 384-388 . 百度学术
    6. 刘红兰. 胜利海上油田安全可控长效分层注水技术. 石油钻探技术. 2019(01): 83-89 . 本站查看
    7. 张技. 油田安全环保隐患成因分析及治理技术探析. 石化技术. 2019(05): 235+237 . 百度学术
    8. 李勇. 埕岛油田长效细分注水关键技术及应用. 石油机械. 2019(10): 94-100 . 百度学术
    9. 杨建政. 适合海上低渗气田水平井固井的柔性水泥浆体系研究. 化工管理. 2019(32): 224 . 百度学术
    10. 刘红兰. 分层注水井测调一体化新技术. 石油钻探技术. 2018(01): 83-89 . 本站查看

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  93
  • PDF下载量:  45
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2023-05-07
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回