抗高温隔离膜缓速酸液体系研制与性能评价

冯新根, 方俊伟, 方裕燕, 潘丽娟

冯新根,方俊伟,方裕燕,等. 抗高温隔离膜缓速酸液体系研制与性能评价[J]. 石油钻探技术,2023, 51(6):99-105. DOI: 10.11911/syztjs.2023064
引用本文: 冯新根,方俊伟,方裕燕,等. 抗高温隔离膜缓速酸液体系研制与性能评价[J]. 石油钻探技术,2023, 51(6):99-105. DOI: 10.11911/syztjs.2023064
FENG Xingen, FANG Junwei, FANG Yuyan, et al. Development and performance evaluation of a high temperature-resistant isolation membrane retarded acid solution system [J]. Petroleum Drilling Techniques,2023, 51(6):99-105. DOI: 10.11911/syztjs.2023064
Citation: FENG Xingen, FANG Junwei, FANG Yuyan, et al. Development and performance evaluation of a high temperature-resistant isolation membrane retarded acid solution system [J]. Petroleum Drilling Techniques,2023, 51(6):99-105. DOI: 10.11911/syztjs.2023064

抗高温隔离膜缓速酸液体系研制与性能评价

基金项目: 中国石化重点科技攻关项目“风化壳岩溶区井周缝洞高效沟通技术研究”(编号:P20042-4)、“顺北一区5号断裂带提质提速钻完井技术研究”(编号:P20002)联合资助。
详细信息
    作者简介:

    冯新根(1995—),男,陕西咸阳人,2018年毕业于陕西科技大学石油工程专业,2021年获陕西科技大学化学工程与技术专业硕士学位,助理工程师,主要从事储层改造液方面的研究工作。E-mail:fengxg9687.xbsj@sinopec.com

  • 中图分类号: TE357.2

Development and Performance Evaluation of a High Temperature-Resistant Isolation Membrane Retarded Acid Solution System

  • 摘要:

    为了解决碳酸盐岩储层酸压改造时存在的酸液黏度过高、泵注排量低等问题,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和含氟单体(ZTA)为单体,采用自由基水溶液聚合方法合成了隔离膜高温缓速剂;以AM、AMPS和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为单体,采用反相乳液聚合法合成了耐酸降阻剂。隔离膜缓速剂和降阻剂的红外、热重和XRD衍射分析测试结果表明符合分子结构设计,热分解温度分别为209.13和243.70 ℃。通过优化隔离膜缓速剂和耐酸降阻剂的加量和测试配伍性,形成了抗高温隔离膜缓速酸液体系,其黏度小于5 mPa·s;在140 ℃温度下,用20%盐酸配制隔离膜缓速酸液体系的酸岩反应速率为4.31 μmol/(cm2·s),比胶凝酸体系降低了34.8%,用15%盐酸配制隔离膜缓速酸液体系的降阻率为62.7%。研究结果表明,抗高温隔离膜缓速酸液体系的缓速和降阻性能良好,适用于塔河油田酸压酸化。

    Abstract:

    In order to solve the problems of high viscosity of acid solution and low pump displacement in acid fracturing stimulation of carbonate reservoirs, the isolation membrane retarder for high temperatures was synthesized by free radical aqueous polymerization with acrylamide (AM), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and fluorine-containing monomer (ZTA) as monomers. An acid-resistant drag reducer was prepared by inverse emulsion polymerization, with AM, AMPS, and methacryloyloxyethyl trimethylammonium chloride (DMC) as monomers. The results of infrared, thermogravimetric, and X-ray diffraction (XRD) analysis of the isolation membrane retarder and drag reducer showed that they conformed to the molecular structure design, and their thermal decomposition temperatures were 209.13 °C and 243.70 °C, respectively. A retarded acid solution system with a high temperature-resistant isolation membrane was formed through compatibility testing and optimization on the concentration of isolation membrane retarder and acid-resistant drag reducer. The viscosity of the acid solution system was less than 5 mPa·s. In a 20% hydrochloric acid system, the average acid rock reaction rate was 4.31 μmol/(cm2·s) at 140 °C, which was 34.8% lower than the gelled acid system, and a drag reduction rate of the acid solution system (15% hydrochloric acid) was 62.7%. The results showed that the developed retarded acid solution system with high temperature-resistant isolation membrane resulted in good retarding and drag reduction performance and could be used for acid fracturing and acidizing in Tahe Oilfield.

  • 图  1   隔离膜缓速剂的红外光谱

    Figure  1.   Infrared spectrum of an isolation membrane retarder

    图  2   隔离膜缓速剂的热重分析结果

    Figure  2.   Thermogravimetric analysis result of an isolation membrane retarder

    图  3   隔离膜缓速剂的XRD测试曲线

    Figure  3.   XRD test curve of an isolation membrane retarder

    图  4   耐酸降阻剂红外光谱

    Figure  4.   Infrared spectrum of an acid-resistant drag reducer

    图  5   耐酸降阻剂的热重分析结果

    Figure  5.   Thermogravimetric analysis result of an acid drag reducer

    图  6   耐酸降阻剂XRD测试曲线

    Figure  6.   XRD test curve of an acid drag reducer

    表  1   耐酸降阻剂的降阻性能

    Table  1   Drag reduction performance of an acid-resistant drag reducer

    类型排量/(L·min−1压差/kPa降阻率,%
    清水47.4162
    清水+0.08%耐酸降阻剂47.45168.5
    清水+0.10%耐酸降阻剂47.44870.3
    清水+0.12%耐酸降阻剂47.45069.1
    下载: 导出CSV

    表  2   不同酸液体系的酸岩反应速率

    Table  2   Acid rock reaction rates under different acid solution systems

    酸液体系反应前后岩心
    质量差/g
    平均酸岩反应速率/
    (μmol·cm−2·s−1
    15.0%盐酸71.635 539.70
    0.1%耐酸降阻剂+3.0%缓速剂+15.0%盐酸5.338 82.97
    0.7%稠化剂+15.0%盐酸5.765 73.20
    0.1%耐酸降阻剂+15.0%盐酸25.297 014.00
    3.0%缓速剂+15.0%盐酸10.346 45.74
    下载: 导出CSV

    表  3   不同质量分数盐酸配制隔离膜缓速酸液体系反应前后的黏度及酸岩反应速率

    Table  3   Acid viscosity and acid rock reaction rate before and after reaction with isolation membrane retarded acid solution systems of different acid concentration

    盐酸质量分数,%酸液初始黏度/(mPa·s)剩余酸黏度/(mPa·s)反应前后质量差/g平均酸岩反应速率/
    (μmol·cm−2·s−1
    15.03.076 82.163 810.072 32.85
    20.02.983 22.188 514.112 03.92
    28.03.874 92.510 124.291 76.87
    下载: 导出CSV

    表  4   不同酸液体系的动态酸岩反应速率

    Table  4   Dynamic acid rock reaction rates in different acid solution systems

    酸液体系盐酸质量分数,%岩心消耗
    质量/g
    平均酸岩反应速率/
    (μmol·cm−2·s−1
    隔离膜
    缓速酸
    15.08.862.46
    20.015.514.31
    28.018.375.10
    胶凝酸15.014.624.06
    20.020.935.81
    28.027.157.54
    下载: 导出CSV
  • [1] 吴丰,代槿,姚聪,等. 塔河油田奥陶系一间房组与鹰山组断溶体发育模式解剖[J]. 断块油气田,2022,29(1):33–39.

    WU Feng, DAI Jin, YAO Cong, et al. Developmental mode analysis of the fault-karst reservoir in Yijianfang Formation and Yingshan Formation of Ordovician in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 33–39.

    [2] 米强波. 塔河油田碳酸盐岩储层酸压改造效果[J]. 油气田地面工程,2014,33(4):88–89.

    MI Qiangbo. Effect of acid fracturing on carbonate reservoir in Tahe Oilfield[J]. Oil-Gas Field Surface Engineering, 2014, 33(4): 88–89.

    [3] 钟小军,张锐,吴刚,等. 复杂非均质碳酸盐岩储层酸岩反应动力学特征及酸压对策研究[J]. 钻井液与完井液,2020,37(6):798–802.

    ZHONG Xiaojun, ZHANG Rui, WU Gang, et al. Study on dynamic characteristics of acid rock reaction and acid fracturing countermeasures in complex heterogeneous carbonate reservoirs[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 798–802.

    [4] 陈力力,刘飞,杨建,等. 四川盆地深层超深层碳酸盐岩水平井分段酸压关键技术[J]. 天然气工业,2022,42(12):56–64.

    CHEN Lili, LIU Fei, YANG Jian, et al. Horizontal well staged acid fracturing technology for deep and ultra-deep carbonate gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(12): 56–64.

    [5] 闫杰,张涵,郭志杰,等. 高分子聚合物稠化剂的制备及其压裂液应用性能研究[J]. 钻井液与完井液,2022,39(1):107–113.

    YAN Jie, ZHANG Han, GUO Zhijie, et al. Preparation of a high molecular weight polymer thickening agent and its use in fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 107–113.

    [6] 张伟,任登峰,李富荣,等. 一种耐高温酸液稠化剂的研制[J]. 钻采工艺,2022,45(6):129–133.

    ZHANG Wei, REN Dengfeng, LI Furong, et al. Development of a high temperature resistant acid thickener[J]. Drilling & Production Technology, 2022, 45(6): 129–133.

    [7] 王磊,薛蓉,赵倩云,等. 油气藏酸液体系研究进展[J]. 应用化工,2018,47(3):548–553.

    WANG Lei, XUE Rong, ZHAO Qianyun, et al. A critical review of acidizing fluids in reservoirs for recent years[J]. Applied Chemical Industry, 2018, 47(3): 548–553.

    [8]

    MAHESHWARI P, MAXEY J, BALAKOTAIAH V. Reactive-dissolution modeling and experimental comparison of wormhole formation in carbonates with gelled and emulsified acids[J]. SPE Production & Operations, 2016, 31(2): 103–119.

    [9]

    CAIRNS A J, AL-MUNTASHERI G A, SAYED M, et al. Targeting enhanced production through deep carbonate stimulation: Stabilized acid emulsions[R]. SPE 178967, 2016.

    [10]

    ALOTAIBI F, DAHLAN M, KHALDI M, et al. Evaluation of inorganic-crosslinked-based gelled acid system for high-temperature applications[R]. SPE 199258, 2020.

    [11] 安娜,罗攀登,李永寿,等. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术,2020,48(2):93–97.

    AN Na, LUO Pandeng, LI Yongshou, et al. Development of solid granular acid for the deep acid-fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93–97.

    [12] 李小刚,秦杨,朱静怡,等. 自生酸酸液体系研究进展及展望[J]. 特种油气藏,2022,29(6):1–10.

    LI Xiaogang, QIN Yang, ZHU Jingyi, et al. Research progress and prospect of autogenic acid system[J]. Special Oil & Gas Reservoirs, 2022, 29(6): 1–10.

    [13] 林永茂,缪尉杰,刘林,等. 川西南靖和1井茅口组立体酸压技术[J]. 石油钻探技术,2022,50(2):105–112. doi: 10.11911/syztjs.2022009

    LIN Yongmao, MIAO Weijie, LIU Lin, et al. 3D acid fracturing technology in Maokou Formation of Well Jinghe 1 in southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105–112. doi: 10.11911/syztjs.2022009

    [14] 吴峙颖,胡亚斐,蒋廷学,等. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究[J]. 石油钻探技术,2022,50(4):90–96.

    WU Shiying, HU Yafei, JIANG Tingxue, et al. Study on propagation and diversion characteristics of hydraulic fractures in vuggy carbonate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90–96.

    [15] 胡锋,胡雅洁. 塔河油田关于变粘酸酸压工艺的有效研究[J]. 中国石油和化工标准与质量,2013,33(21):127–128.

    HU Feng, HU Yajie. Effective research on variable viscosity acid fracturing process in Tahe Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(21): 127–128.

    [16] 赵永昌. 塔河高温碳酸盐岩储层酸压改造交联酸体系优化研究[D]. 北京: 中国石油大学(北京), 2020.

    ZHAO Yongchang. Optimization of crosslinked acid system in acid fracturing of Tahe high temperature carbonate reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.

    [17] 王萌,车明光,周长林,等. 一种新型耐高温碳酸盐岩酸压胶凝酸及其应用[J]. 钻井液与完井液,2020,37(5):670–676.

    WANG Meng, CHE Mingguang, ZHOU Changlin, et al. A novel gelled acid for the acid fracturing of the high-temperature carbonates and its application[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 670–676.

    [18] 穆代峰,贾文峰,姚奕明,等. 胶凝酸与交联酸一体化耐高温缓速酸研究[J]. 钻井液与完井液,2019,36(5):634–638.

    MU Daifeng, JIA Wenfeng, YAO Yiming, et al. Study on the integration of gelled acid and crosslinked acid to form high temperature retarded acid[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 634–638.

    [19] 王旭,贾文峰,任倩倩,等. 一种新型乳化胶凝酸的制备与性能评价[J]. 钻井液与完井液,2017,34(5):111–116.

    WANG Xu, JIA Wenfeng, REN Qianqian, et al. Development and evaluation of a new emulsified gelled acid[J]. Drilling Fluid & Completion Fluid, 2017, 34(5): 111–116.

    [20] 杨方政,李春月,侯帆,等. 延迟交联冻胶酸酸压技术在塔河油田的应用[J]. 化工中间体,2014,10(8):25–30.

    YANG Fangzheng, LI Chunyue, HOU Fan, et al. Delayed crosslinked gel acid fracturing technology in Tahe Oilfield[J]. Chemical Intermediates, 2014, 10(8): 25–30.

    [21] 贾光亮,蒋新立,李晔旻. 塔河油田超深井压裂裂缝自生酸酸化研究及应用[J]. 复杂油气藏,2017,10(2):73–75.

    JIA Guangliang, JIANG Xinli, LI Yemin. Research and application of self-generating acid fracturing technology in Tahe Oilfield[J]. Complex Hydrocarbon Reservoirs, 2017, 10(2): 73–75.

    [22] 刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术,2017,45(1):104–111.

    LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.

    [23] 刘芳慧,张世昆,曹耐. 强渗透缓速酸液体系研究与评价[J]. 钻井液与完井液,2022,39(3):365–372.

    LIU Fanghui, ZHANG Shikun, CAO Nai. Study and evaluation of highly permeable retarded acids[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 365–372.

    [24] 薛衡,何冰,蒋利平,等. 碳酸盐岩储层水平井靶向酸化研究及应用[J]. 西南石油大学学报(自然科学版),2022,44(4):121–128.

    XUE Heng, HE Bing, JIANG Liping, et al. Research and application of targeted acidizing tech in horizontal well of carbonate reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 121–128.

    [25] 王琨,詹立,苟波. 高温致密碳酸盐岩与胶凝酸酸岩反应速率测试方法研究[J]. 钻采工艺,2018,41(3):41–44.

    WANG Kun, ZHAN Li, GOU Bo. Method to test rock-acid reaction rate between gelled acid and high temperature tight carbonate rocks[J]. Drilling & Production Technology, 2018, 41(3): 41–44.

    [26] 张忆南,梁利喜,刘向君,等. 全直径碳酸盐岩岩心孔隙空间重构方法[J]. 断块油气田,2021,28(3):346–351.

    ZHANG Yinan, LIANG Lixi, LIU Xiangjun, et al. Pore-space reconstruction method research for full-diameter carbonate cores[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 346–351.

图(6)  /  表(4)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  49
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 修回日期:  2023-07-31
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2023-11-24

目录

    /

    返回文章
    返回