Processing math: 100%

可压性指数对压裂裂缝扩展规律的影响研究以南海LF油田为例

吴百烈, 彭成勇, 武广瑷, 楼一珊, 尹彪

吴百烈,彭成勇,武广瑷,等. 可压性指数对压裂裂缝扩展规律的影响研究—以南海LF油田为例[J]. 石油钻探技术,2023, 51(3):105-112. DOI: 10.11911/syztjs.2023062
引用本文: 吴百烈,彭成勇,武广瑷,等. 可压性指数对压裂裂缝扩展规律的影响研究—以南海LF油田为例[J]. 石油钻探技术,2023, 51(3):105-112. DOI: 10.11911/syztjs.2023062
WU Bailie, PENG Chengyong, WU Guang'ai, et al. Effect of fracability index on fracture propagation: A case study of LF Oilfield in South China Sea [J]. Petroleum Drilling Techniques,2023, 51(3):105-112. DOI: 10.11911/syztjs.2023062
Citation: WU Bailie, PENG Chengyong, WU Guang'ai, et al. Effect of fracability index on fracture propagation: A case study of LF Oilfield in South China Sea [J]. Petroleum Drilling Techniques,2023, 51(3):105-112. DOI: 10.11911/syztjs.2023062

可压性指数对压裂裂缝扩展规律的影响研究——以南海LF油田为例

基金项目: 中海油研究总院项目“惠州26-6油田开发可行性研究”(编号:2020PFS-03)、湖北省教育厅项目“基于疏松砂泥岩互层防砂筛管物理化学堵塞机制研究”(编号:B2019035)资助
详细信息
    作者简介:

    吴百烈(1986—),男,山东新泰人,2008年毕业于中国石油大学(华东)石油工程专业,2014年获中国石油大学(华东)油气井工程专业博士学位,工程师,主要从事岩石力学及储层改造工艺和技术研究。E-mail:wubailiewubailie@sina.com。

    通讯作者:

    尹彪,17352644983@163.com

  • 中图分类号: TE357

Effect of Fracability Index on Fracture Propagation: A Case Study of LF Oilfield in South China Sea

  • 摘要:

    南海深层古近系油气资源丰富,但储层物性差、非均质性强,需通过水力压裂才能实现商业化开采。为探究可压性指数对压裂裂缝扩展规律的影响,以南海LF油田为研究对象,综合考虑储层岩石脆性及力学特征,建立了适用于南海LF油田的可压性指数计算模型,利用该模型计算出南海LF油田文昌组3个小层的可压性指数分别为0.75,0.45和0.92。选用南海LF油田不同可压性指数的露头岩样,利用真三轴水力压裂物理模拟试验装置,进行了压裂物理模拟试验。试验结果表明:文昌组3个小层的人工裂缝易在层理和天然裂缝发育位置起裂,在各射孔处并不是同时起裂;可压性指数越高越,越易形成形态复杂的人工裂缝。研究成果对评价海上低孔低渗油气藏可压裂性、优选甜点位置以及优化压裂方案具有重要的指导意义。

    Abstract:

    The South China Sea is rich in deep Paleogene oil and gas resources. However, due to the poor formation properties and strong heterogeneity of reservoirs, hydraulic fracturing is needed to realize commercial exploitation. In order to explore the effect of the fracability index on fracture propagation, the rock brittleness and mechanical characteristics of reservoirs in LF Oilfield in the South China Sea were comprehensively studied, and the fracability index calculation model suitable for the LF Oilfield in the South China Sea was established. The fracability indexes of the three sublayers of the Wenchang Formation in the target layer in LF Oilfield in the South China Sea were determined to be 0.75, 0.45, and 0.92 by the model, respectively. Outcrop rock samples with different fracability indexes of LF Oilfield in the South China Sea were selected, and the physical simulation test of hydraulic fracturing was carried out by using the physical simulation test device of true triaxial hydraulic fracturing. The test results show that the artificial fractures in the three sublayers of the Wenchang Formation in the target layer are easy to initiate at the position where bedding and natural fractures develop, but they do not initiate simultaneously at each perforation. As the fracability index is higher, complex fracture morphology will be more likely to form. The research results have important guiding significance for evaluating the fracability of low-porosity and low-permeability offshore oil and gas reservoirs, selecting the location of sweet spots, and optimizing the fracturing scheme.

  • 图  1   预置裂缝与加载方向不同夹角下的断裂韧性试验示意及结果

    Figure  1.   Schematic diagram and results of fracture toughness experiments at different inclination angles

    图  2   不同水平应力差下裂缝的扩展情况

    Figure  2.   Fracture propagation under different stress difference

    图  3   LF-1井文昌组的可压性指数

    Figure  3.   Fracability index of Wenchang Formation in Well LF-1

    图  4   9#岩样压裂后裂缝扩展情况

    Figure  4.   Fracture propagation of rock sample 9# after fracturing

    图  5   9#岩样压裂模拟试验时的泵压曲线

    Figure  5.   Pump pressure curve during fracturing simulation test of rock sample 9#

    图  6   4#岩样压裂后裂缝扩展情况

    Figure  6.   Fracture propagation of rock sample 4# after fracturing

    图  7   4#岩样压裂模拟试验时的泵压曲线

    Figure  7.   Pump pressure curve during fracturing simulation test of rock sample 4#

    图  8   5#岩样的裂缝扩展情况

    Figure  8.   Fracture propagation of rock sample 5#

    图  9   6#岩样在6 MPa应力差下和 8#岩样在10 MPa应力差下压裂时的裂缝扩展情况

    Figure  9.   Fracture propagation of rock sample 6# under stress difference of 6 MPa and rock sample 8# under stress difference of 10 MPa during fracturing

    表  1   LF油田不同目标层位的力学特征参数

    Table  1   Mechanica characteristic parameters of different target layers in LF Oilfield

    目标小层层厚/
    m
    孔隙度,%渗透率/
    mD
    弹性模量/
    GPa
    σH/
    MPa
    σh/
    MPa
    WC-12011.54.616.5~28.769.3058.15
    WC-22012.88.415.1~46.668.5059.50
    WC-34011.011.516.3~42.868.6060.17
    下载: 导出CSV

    表  2   不同可压性指数岩石压裂物理模拟试验方案

    Table  2   Physical simulation test scheme of rock fracturing with different fracability indexes

    试样
    编号
    脆性
    指数
    可压性
    指数
    排量/
    (mL·min−1
    射孔
    簇数
    压裂液黏度/
    (mPa·s)
    水平应力
    差/MPa
    9#0.410.52353108
    2#0.520.65353108
    3#0.590.78353108
    1#0.640.89353108
    4#0.700.98353108
    下载: 导出CSV

    表  3   不同应力差条件下岩石压裂物理模拟试验方案

    Table  3   Physical simulation test scheme of rock fracturing under different in-situ stress difference

    岩样
    编号
    水平应力
    差/MPa
    排量/
    (mL·min−1
    射孔
    簇数
    压裂液黏度/
    (mPa·s)
    水平主应力
    差异系数
    5# 3353100.13
    6# 6353100.30
    8#10353100.62
    下载: 导出CSV
  • [1] 吴百烈,杨凯,程宇雄,等. 南海低渗透储层支撑剂导流能力试验研究[J]. 石油钻探技术,2021,49(6):86–92.

    WU Bailie, YANG Kai, CHENG Yuxiong, et al. Experimental study of proppant conductivity in low permeability reservoirs in the South China Sea[J]. Petroleum Drilling Techniques, 2021, 49(6): 86–92.

    [2] 周立宏,刘学伟,付大其,等. 陆相页岩油岩石可压裂性影响因素评价与应用:以沧东凹陷孔二段为例[J]. 中国石油勘探,2019,24(5):670–678.

    ZHOU Lihong, LIU Xuewei, FU Daqi, et al. Evaluation and application of influencing factors on the fracturability of continental shale oil reservoir: a case study of Kong 2 Member in Cangdong Sag[J]. China Petroleum Exploration, 2019, 24(5): 670–678.

    [3]

    HAJIABDOLMAJID V, KAISER P. Brittleness of rock and stability assessment in hard rock tunneling[J]. Tunnelling and Underground Space Technology, 2003, 18(1): 35–48. doi: 10.1016/S0886-7798(02)00100-1

    [4]

    ALTINDAG R. Assessment of some brittleness indexes in rock-drilling efficiency[J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 361–370. doi: 10.1007/s00603-009-0057-x

    [5] 张欣, 尚锁贵, 张国强, 等.基于多资料的砂砾岩储层有效性精细评价[J]. 石油钻采工艺, 2018, 40(增刊1): 70-72.

    ZHANG Xin, SHANG Suogui, ZHANG Guoqiang, et al. Fine evaluation on the effectiveness of glutenite reservoirs based on diverse data[J]. Oil Drilling & Production Technology, 2018, 40(supplement1): 70-72.

    [6] 赖富强,冷寒冰,龚大建,等. 综合矿物组分和弹性力学参数的页岩脆性评价方法[J]. 断块油气田,2019,26(2):168–171.

    LLAI Fuqiang,LENG Hanbing,GONG Dajian,et al. Evaluation of shale brittleness based on mineral compositions and elastic mechanics parameters[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 168–171.

    [7] 刘尧文,卞晓冰,李双明,等. 基于应力反演的页岩可压性评价方法[J]. 石油钻探技术,2022,50(1):82–88.

    LIU Yaowen, BIAN Xiaobing, LI Shuangming, et al. An evaluation method of shale fracability based on stress inversion [J]. Petroleum Drilling Techniques, 2022, 50(1): 82–88.

    [8]

    CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture-treatment design[J]. SPE Production & Operations, 2010, 25(4): 438–452.

    [9]

    RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[R]. SPE 115258, 2008.

    [10]

    JIN Xiaochun, SHAH S N, ROEGIERS J C, et al. An integrated petrophysics and geomechanics approach for fracability evaluation in shale reservoirs[J]. SPE Journal, 2015, 20(3): 518–526. doi: 10.2118/168589-PA

    [11] 蒋廷学,卞晓冰,苏瑗,等. 页岩可压性指数评价新方法及应用[J]. 石油钻探技术,2014,42(5):16–20.

    JIANG Tingxue,BIAN Xiaobing,SU Yuan, et al. A new method for evaluating shale fracability index and its application[J]. Petroleum Drilling Techniques, 2014, 42(5): 16–20.

    [12] 廖东良,肖立志,张元春. 基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J]. 石油钻探技术,2014,42(4):37–41.

    LIAO Dongliang, XIAO Lizhi , ZHANG Yuanchun. Evaluation model for shale brittleness index based on mineral content and fracture toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37–41.

    [13] 刘玉章,修乃岭,丁云宏,等. 页岩储层水力裂缝网络多因素耦合分析[J]. 天然气工业,2015,35(1):61–66.

    LIU Yuzhang, XIU Nailing, DING Yunhong, et al. Multi-factor coupling of hydraulic fracture network in a shale gas reservoir[J]. Natural Gas Industry, 2015, 35(1): 61–66.

    [14]

    LI Jinbu, WANG Min, LU Shuangfang, et al. A new method for predicting sweet spots of shale oil using conventional well logs[J]. Marine and Petroleum Geology, 2020, 113: 104097. doi: 10.1016/j.marpetgeo.2019.104097

    [15] 吕照,刘叶轩,陈希,等. 页岩油储层可压性分析及指数预测[J]. 断块油气田,2021,28(6):739–744.

    LYU Zhao, LIU Yexuan, CHEN Xi, et al. The fracability analysis and index prediction of shale oil reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 739–744.

    [16] 赖富强,罗涵,覃栋优,等. 基于层次分析法的页岩气储层可压裂性评价研究[J]. 特种油气藏,2018,25(3):154–159.

    LAI Fuqiang, LUO Han, QIN Dongyou, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 154–159.

    [17] 郭建春,赵志红,路千里,等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业,2021,41(1):102–117.

    GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102–117.

    [18]

    MARTIN C D. Brittle failure of rock materials: test results and constitutive models[J]. Canadian Geotechnical Journal, 1996, 33(2): 378. doi: 10.1139/t96-901

    [19] 俞然刚,张尹,郑彬涛,等. 射孔相位及地应力对薄互层起裂压力及裂缝扩展影响的实验研究[J]. 钻井液与完井液,2020,37(1).

    YU Rangang, ZHANG Yin, ZHENG Bintao, et al. Experimental study on the effects of perforation phasing on fracturing pressure and fracture propagation of thin interbeds[J]. Drilling Fluid & Completion Fluid, 2020, 37(1).

    [20] 侯振坤,杨春和,王磊,等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(2):407–414.

    HOU Zhenkun, YANG Chunhe, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407–414.

    [21]

    ZHAO Zhiheng, LI Xiao, HE Jianming, et al. Investigation of fracture propagation characteristics caused by hydraulic fracturing in naturally fractured continental shale[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 276–283. doi: 10.1016/j.jngse.2018.02.022

    [22] 李成嵩,李社坤,范明涛,等. 水平井压裂过程中固井界面裂缝的扩展规律[J]. 钻井液与完井液,2022,39(6):761–766.

    LI Chengsong, LI Shekun, FAN Mingtao, et al. Rule of propagation of fractures through the bonding interfaces of cement sheath in horizontal well fracturing[J]. Drilling Fluid & Completion Fluid, 2022, 39(6): 761–766.

    [23] 崔壮,侯冰,付世豪,等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田,2022,29(1):111–117.

    CUI Zhuang,HOU Bing,FU Shihao,et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 111–117.

    [24] 孟勇,贾庆升,张潦源,等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术,2021,49(4).

    MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying Sag [J]. Petroleum Drilling Techniques, 2021, 49(4).

    [25] 袁青松,朱德胜,汪超,等. 南华北盆地海陆过渡相煤系页岩地质特征及可压性分析:以中牟区块太原组为例[J]. 河南理工大学学报(自然科学版),2023,42(1):62–70.

    YUAN Qingsong, ZHU Desheng, WANG Chao, et al. Geological characteristics and fracability analysis of marine-continental transitional facies coal measures shale in southern North China basin: A case of Taiyuan Formation, Zhongmu Block[J]. Journal of Henan Polytechnic University(Natural Science), 2023, 42(1): 62–70.

    [26]

    AWAJI H,SATO S. Combined mode fracture toughness measurement by the disk test[J]. Journal of Engineering Materials & Technology Transactions of the Asme, 1978, 100(2): 175–182.

    [27] 吴海波,董守华,张平松,等. 基于超声波测试的煤样脆性指数计算与分析[J]. 地球物理学进展,2021,36(3):1138–1144.

    WU Haibo, DONG Shouhua, ZHANG Pingsong, et al. Brittleness index calculation and analysis for coal samples based on ultrasonic test data[J]. Progress in Geophysics, 2021, 36(3): 1138–1144.

    [28] 张平,夏晓敏,崔涵,等. 基于岩石物理实验的致密油储集层脆性指数预测:以柴达木盆地跃灰101井区为例[J]. 新疆石油地质,2019,40(5):615–623.

    ZHANG Ping, XIA Xiaomin, CUI Han, et al. Tight oil reservoir brittleness index prediction based on petrophysical experiments: a case from Yuehui 101 area of Qaidam Basin[J]. Xinjiang Petroleum Geology, 2019, 40(5): 615–623.

    [29] 金衍,陈勉,王怀英,等. 利用测井资料预测岩石Ⅱ型断裂韧性的方法研究[J]. 岩石力学与工程学报,2008,27(增刊2):3630–3635.

    JIN Yan, CHEN Mian, WANG Huaiying, et al. Study on prediction method of fracture toughness of rock mode Ⅱ by logging data[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(supplement2): 3630–3635.

    [30] 袁俊亮,邓金根,张定宇,等. 页岩气储层可压裂性评价技术[J]. 石油学报,2013,34(3):523–527.

    YUAN Junliang, DENG Jingen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523–527.

  • 期刊类型引用(4)

    1. 尹帅,赵军辉,刘平,沈志成. 裂缝性储层天然缝与水力缝开启条件及扩展规律研究. 石油钻探技术. 2024(03): 98-105 . 本站查看
    2. 刘善勇,尹彪,楼一珊,张艳. 粗糙裂缝内支撑剂运移与展布规律数值模拟. 石油钻探技术. 2024(04): 104-109 . 本站查看
    3. 刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 . 百度学术
    4. 石明星,李沁,邱思杨,雷雲,敬伟. 压裂时天然裂缝对储层温度分布的影响. 钻井液与完井液. 2023(04): 540-550 . 百度学术

    其他类型引用(0)

图(9)  /  表(3)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  77
  • PDF下载量:  59
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2023-05-14
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回