连续管多孔喷嘴射流工具研制与清洗参数优化

赵金, 赵星, 蔡鹏, 彭齐, 饶嘉骐

赵金,赵星,蔡鹏,等. 连续管多孔喷嘴射流工具研制与清洗参数优化[J]. 石油钻探技术,2023, 51(3):83-89. DOI: 10.11911/syztjs.2023061
引用本文: 赵金,赵星,蔡鹏,等. 连续管多孔喷嘴射流工具研制与清洗参数优化[J]. 石油钻探技术,2023, 51(3):83-89. DOI: 10.11911/syztjs.2023061
ZHAO Jin, ZHAO Xing, CAI Peng, et al. Development of coiled tubing jet tools with multi-hole nozzles and cleaning parameter optimization [J]. Petroleum Drilling Techniques,2023, 51(3):83-89. DOI: 10.11911/syztjs.2023061
Citation: ZHAO Jin, ZHAO Xing, CAI Peng, et al. Development of coiled tubing jet tools with multi-hole nozzles and cleaning parameter optimization [J]. Petroleum Drilling Techniques,2023, 51(3):83-89. DOI: 10.11911/syztjs.2023061

连续管多孔喷嘴射流工具研制与清洗参数优化

基金项目: 国家自然科学基金项目“多物理场流固耦合支撑剂动态架桥缝网时空演化规律研究”(编号:52204025) 资助
详细信息
    作者简介:

    赵金(1988—),男,湖北荆州人,2010年毕业于长江大学石油工程专业,2021年获西南石油大学油气田开发工程专业博士学位,讲师,主要从事非常规油气开发理论与技术及连续管作业工艺与工具的研究和教学工作。E-mail:zhaojin@yangtzeu.edu.cn

  • 中图分类号: TE24

Development of Coiled Tubing Jet Tools with Multi-Hole Nozzles and Cleaning Parameter Optimization

  • 摘要:

    连续管尺寸与喷嘴射流参数、泵车参数不匹配导致清洗效果较差,针对该问题,模拟了连续管、喷嘴组合及泵车水力参数的匹配关系,通过试验分析了射流速度、喷嘴直径、喷嘴数量、移动速度和除垢剂对油管清洗效果的影响,基于分析结果研制了新型多孔喷射清洗工具,并进行了清洗参数优化。研究表明,在管柱安全和管内空间允许的条件下,选择大尺寸连续管,可降低管内摩阻和提高流体返出速度;针对井深不超过 3 000 m 的井 ϕ73.0 mm 油管除垢,选用ϕ50.8 mm连续管,柱塞直径114.3 mm、泵冲90 min−1、功率580 kW的泵车,可获得最优施工排量。针对七个泉油田油管除垢,采用清水+5%盐酸+1%除垢剂,射流除垢工具安装 5个ϕ3.5 mm喷嘴,施工排量550~600 L/min,移动速度为5 m/min时,除垢效果较好。连续管射流除垢技术具有安全、环保、无污染等特点,应用前景广阔。

    Abstract:

    To solve the problem of poor cleaning effects caused by incorrect matching of coiled tubing (CT) sizes with nozzle jet parameters and pumper parameters, the influences of jet velocities, nozzle diameters, number of nozzles, movement velocities, and scale removers on tubing cleaning effects were studied through laboratory experiments by simulating the matching relationship among CTs, nozzle combinations, and hydraulic parameters of pumpers. Based on the analysis results, a new type of multi-hole jet cleaning tool was designed, and the parameters of which were optimized. The research shows that under the condition that the string is safe, and the space in the tubing is large, the CT with a large size can be selected to reduce the friction in the tubing and increase the flow return velocity. For the scale removing of ϕ73 mm tubing with the well depth of less than 3000 m, the optimal construction displacement can be obtained by selecting a ϕ50.8 mm CT,a pumper plunger diameter of 114.3 mm, a pump speed of 90 min−1, and a power of 580 kW. For the scale removing of tubing in Qigequan Oilfield, clean water was mixed with hydrochloric acid of 5% and a scale remover of 1%, the jet scale removing tool was equipped with five ϕ3.5 mm nozzles. In that case, the construction displacement is 550–600 L/min, and the movement velocity is 5 m/min. The results shows a good scale removing effect. CT jet scale removing technology is safe, environmentally friendly, and pollution-free, it has a great prospect for broad application.

  • 图  1   连续管尺寸优选

    Figure  1.   CT size optimization

    图  2   不同喷嘴组合压降与施工排量的关系

    Figure  2.   Relationship between pressure drop and displacement of different nozzle combinations

    图  3   不同喷嘴组合射流速度与施工排量的关系

    Figure  3.   Relationship between jet velocity and displacement of different nozzle combinations

    图  4   旋转喷射工具结构示意

    Figure  4.   Structure of rotary jet tool

    图  5   射流除垢试验流程

    Figure  5.   Experimental flow of jet scale removing

    图  6   不同喷速油管清洗效果

    Figure  6.   Influence of different jet velocities on tubing cleaning

    图  7   原始垢样

    Figure  7.   Original scale sample

    图  8   清水清洗效果

    Figure  8.   Cleaning effect with water

    图  9   除垢剂配液除垢效果

    Figure  9.   Cleaning effect with scale remover

    表  1   不同尺寸连续管水力参数计算结果

    Table  1   Hydraulic parameter calculation results of different CTs

    外径/mm内径/mm排量/(L·min−1环空1间隙/mm环空2流速/(m∙s−1管内摩阻/MPa环空2摩阻/MPa
    60.351.411000.852.5841.603.91
    50.841.96505.601.4843.101.52
    44.535.64208.750.9642.900.69
    38.129.225011.950.5743.700.27
    31.822.913015.100.3043.200.08
    下载: 导出CSV

    表  2   泵车性能参数

    Table  2   Pumper performance parameters

    柱塞直径/
    mm
    不同泵冲下的排量和压力
    90/min150/min200/min250/min300/min
    排量/
    (L·min−1
    压力/
    MPa
    排量/
    (L·min−1
    压力/
    MPa
    排量/
    (L·min−1
    压力/
    MPa
    排量/
    (L·min−1
    压力/
    MPa
    排量/
    (L·min−1
    压力/
    MPa
    95.33918065262.1086946.60108637.30130331.10
    101.64457074154.7098841.00123632.80148327.30
    114.35635593843.20125132.40156425.90187621.60
    127.069545115835.00154426.20193121.00231717.50
    输入功率/kW580750750750750
    下载: 导出CSV

    表  3   不同射流速度对清洗效果的影响

    Table  3   Influence of different jet velocities on cleaning effect

    试样结垢油管
    内径/mm
    射流速度/
    (m∙s−1
    清洗效果,%喷射效果
    试样159.015356铁垢残留
    试样256.017381少量铁垢残留
    试样356.020384少量铁垢残留
    注:清洗效果=清洗前后油管内径变化量/(标准油管内径−清洗前油管内径)。
    下载: 导出CSV

    表  4   不同喷嘴直径和数量清洗效果对比

    Table  4   Comparison of cleaning effect with different nozzle diameters and numberss

    喷嘴
    数量
    喷嘴直
    径/mm
    射流速
    度/(m∙s−1
    结垢油管
    内径/mm
    清洗
    效果,%
    备注
    34.5195.705683污垢残留
    44.0185.765685少量污垢残留
    53.5194.105687少量腐蚀物附着
    下载: 导出CSV

    表  5   移动速度对清洗效果的影响

    Table  5   Influence of movement velocities on cleaning effect

    试样原油管
    内径/mm
    移动速度/
    (m·min−1
    清洗
    效果,%
    备注
    154.01578内壁残留大量腐蚀物
    254.01082内壁残留部分垢
    354.0887内壁残留少量垢
    454.5592油管内壁基本干净
    下载: 导出CSV
  • [1] 沈晓明,李根生,马加计,等. 油管结垢机理及水力清垢技术研究[J]. 石油钻探技术,1996,24(3):43–45.

    SHEN Xiaoming, LI Gensheng, MA Jiaji, et al. Study on scaling mechanism and hydraulic cleaning technology of tubing[J]. Petroleum Drilling Techniques, 1996, 24(3): 43–45.

    [2] 彭兴,周玉仓,朱智超,等. 延川南深部煤层气井防漏堵漏技术[J]. 石油钻探技术,2021,49(1):47–52. doi: 10.11911/syztjs.2020133

    PENG Xing, ZHOU Yucang, ZHU Zhichao, et al. Antileaking and lost circulation control technology for deep coalbed methane well in the Yanchuannan Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 47–52. doi: 10.11911/syztjs.2020133

    [3] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13.

    ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13.

    [4] 张启龙,许杰,高斌,等. 以抑制管柱结垢腐蚀为目标的注水井水源选择方法研究及应用[J]. 表面技术,2019,48(11):290–296.

    ZHANG Qilong, XU Jie, GAO Bin, et al. Research and application of water source selection method for water injection well aiming at inhibiting scaling and corrosion of pipe string[J]. Surface Technology, 2019, 48(11): 290–296.

    [5] 弓永军. 磨料水射流切割技术研究现状及其发展趋势[J]. 液压与气动,2016(10):1–5.

    GONG Yongjun. Research status and development trend of abrasive water jet cutting technology[J]. Chinese Hydraulics & Pneumatics, 2016(10): 1–5.

    [6] 李敬彬,李根生,黄中伟,等. 新型旋转射流多孔喷嘴流场的分析[J]. 流体机械,2015,43(7):32–36.

    LI Jingbin, LI Gensheng, HUANG Zhongwei, et al. Flow field study on a new kind swirling multi-orifices nozzle[J]. Fluid Machinery, 2015, 43(7): 32–36.

    [7] 李根生,马加骥,陈洪兵,等. 高压水射流清除油管结垢的研究[J]. 石油钻采工艺,1995,17(2):61–64.

    LI Gensheng, MA Jiaji, CHEN Hongbing, et al. Study on the descaling of calcium carbonate on water-injection pipeline by high pressure water jet[J]. Oil Drilling & Production Technology, 1995, 17(2): 61–64.

    [8] 张逸群,胡萧,武晓亚,等. 旋转射流冲蚀天然气水合物试验及数值模拟研究[J]. 石油钻探技术,2022,50(3):24–33. doi: 10.11911/syztjs.2022046

    ZHANG Yiqun, HU Xiao, WU Xiaoya, et al. Experimental and numerical simulation study of natural gas hydrate erosion by swirling jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24–33. doi: 10.11911/syztjs.2022046

    [9] 武晓光,黄中伟,李根生,等. “连续管+柔性钻具” 超短半径水平井钻井技术研究与现场试验[J]. 石油钻探技术,2022,50(6):56–63.

    WU Xiaoguang, HUANG Zhongwei, LI Gensheng, et al. Research and field test of ultra-short radius horizontal drilling technology combining coiled tubing and flexible BHA[J]. Petroleum Drilling Techniques, 2022, 50(6): 56–63.

    [10]

    ESPINOSA G M A, LEAL J A, DRIWEESH S M, et al. First time live descaling operation in Saudi using coiled tubing fiber optic real-time telemetry rugged tool, foamed fluid and pressure fluid management system[R]. SPE 182763, 2016.

    [11]

    DELGADO E, RODRIGUES V, FAGUNDES L. Customized subsea production flowline cleanout with coiled tubing from a floating production storage and offloading vessel[R]. SPE 199836, 2020.

    [12]

    ALDUAIJ A N, AL-BENSAAD Z, ESPINOSA M, et al. Recent enhancements for coiled tubing descaling treatments in Middle East[R]. SPE 205891, 2021.

    [13]

    HASSIG FONSECA S, SERRANO D, VILLACRES C, et al. Methodology to remediate and evaluate surface flowline capacity with coiled tubing cleanouts[J]. SPE Production & Operations, 2022, 37(3): 520–532.

    [14] 李晓红, 卢义玉, 向文英. 水射流理论及在矿业工程中的应用[M]. 重庆: 重庆大学出版社, 2007: 1 − 2.

    LI Xiaohong, LU Yiyu, XIANG Wenying. Water jet theory and its application in mining engineering[M]. Chongqing: Chongqing University Press, 2007: 1 − 2.

    [15] 薛永志. 高压水射流冲击下煤岩损伤诱导机制及分布特性研究[D]. 重庆: 重庆大学, 2018.

    XUE Yongzhi. Study on the inducement and distribution of damage in coal impacted by high pressure water jets[D]. Chongqing: Chongqing University, 2018.

    [16] 邹德永, 陈雅辉, 赵方圆, 等. 斧形PDC齿破岩规律数值模拟研究[J]. 特种油气藏, 2021, 28(6): 137 − 143.

    ZOU Deyong, CHEN Yahui, ZHAO Fangyuan, et al. Study on rock breaking rules of axe-shaped PDC cutter with numerical simula-tion[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 137 − 143.

    [17]

    ZHAO Jian, ZHANG Guicai, XU Yiji, et al. Mechanism and effect of jet parameters on particle waterjet rock breaking[J]. Powder Technology, 2017, 313: 231–244. doi: 10.1016/j.powtec.2017.03.026

    [18] 柳军,杜智刚,牟少敏,等. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究[J]. 特种油气藏,2022,29(5):139–148. doi: 10.3969/j.issn.1006-6535.2022.05.020

    LIU Jun, DU Zhigang, MU Shaomin, et al. Analysis model and influencing factors of passability of coiled tubing conveying clustered perforating string[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 139–148. doi: 10.3969/j.issn.1006-6535.2022.05.020

    [19] 庞德新,艾白布·阿不力米提,焦文夫,等. 超深气井连续油管多径组合管柱作业新工艺[J]. 天然气工业,2021,41(3):112–118.

    PANG Dexin, ABULIMITI Aibaibu, JIAO Wenfu, et al. A new technology for the multi-diameter combination operation of coiled tubing in ultra-deep gas wells[J]. Natural Gas Industry, 2021, 41(3): 112–118.

    [20]

    TEIMOURIAN R, SHABGARD M R, MOMBER A W. De-painting with high-speed water jets: Paint removal process and substrate surface roughness[J]. Progress in Organic Coatings, 2010, 69(4): 455–462. doi: 10.1016/j.porgcoat.2010.08.010

    [21]

    TAYLO R, CHAPMAN G. Cleaning pipelines using high-pressure water jets[J]. Materials Performance, 1991, 30(9): 25–28.

    [22] 陈庭根, 管志川. 钻井工程理论与技术[M]. 东营: 中国石油大学出版社, 2000: 142−162.

    CHEN Tinggen, GUAN Zhichuan. Drilling engineering theory and technology[M]. Dongying: China University of Petroleum Press, 2000: 142−162.

    [23] 田野,蒋东雷,马传华,等. 钻柱偏心旋转对环空摩阻压降影响的数值模拟研究[J]. 石油钻探技术,2022,50(5):42–49. doi: 10.11911/syztjs.2022104

    TIAN Ye, JIANG Donglei, MA Chuanhua, et al. Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop[J]. Petroleum Drilling Techniques, 2022, 50(5): 42–49. doi: 10.11911/syztjs.2022104

  • 期刊类型引用(3)

    1. 刘锴沅. 连续管套管除垢空化射流喷头优化设计与应用. 石油机械. 2024(02): 44-49 . 百度学术
    2. 周照恒,李玉星,林敏,郭宏帅,王建夫. 盐穴储气库注采气井脖颈收缩原因及预防治理措施. 油气储运. 2024(11): 1313-1319 . 百度学术
    3. 李朝阳,陶立波,张跃,刘威,汲广麟,王俊博. 装有延长抗磨损时间和减缓压力衰减的硬质合金喷嘴清洗管井工具. 石油钻采工艺. 2024(03): 386-394 . 百度学术

    其他类型引用(2)

图(9)  /  表(5)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  71
  • PDF下载量:  59
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-12-25
  • 修回日期:  2023-05-19
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-07
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回