Ductile Nano-Cement Slurry Cementing for Slim-Hole Horizontal Shale Gas Wells
-
摘要:
为了提高页岩气小井眼水平井固井质量,保证水泥环压裂封隔效果及压裂后的完整性,研究了纳米增韧水泥浆及其配套技术。采用纤维复配碳纳米管,研制了纳米增韧水泥浆,其形成的水泥石具有低模量、高抗拉的特点。与常规水泥石相比,纳米增韧水泥石的弹性模量降低50.9%,抗压强度提高28.1%,抗拉强度最高可达5.2 MPa。同时,研究了配套的碳纳米管三级混配工艺,解决了大剂量纳米材料易缠绕、难分散的问题,首次实现了碳纳米管水泥浆的现场应用。纳米增韧水泥浆固井试验结果表明,水平段固井质量合格率达98%;采用微地震井中监测技术评价了纳米增韧水泥环封隔效果,压裂过程中设计外区域的微地震事件为0,表明纳米增韧水泥环封隔良好。研究表明,纳米增韧水泥浆可为页岩气高效低成本开发提供技术支撑。
Abstract:To improve the cementing quality of slim-hole horizontal shale gas wells and ensure the sealing effect of the cement sheath while fracturing and the integrity after fracturing, a ductile nano-cement slurry (DNCS) and its associated technologies were studied. The DNCS was developed by using carbon nanotubes compounded with fibers, which had the properties of low elastic modulus and high tensile strength. Compared with conventional cement, the elastic modulus of ductile nano-cement was reduced by 50.9%; the compressive strength was increased by 28.1%; the maximum tensile strength could reach 5.2 MPa. An associated carbon nanotube three-stage mixing technology was studied, which solved the problems of entanglement and difficult dispersion of large doses of nanomaterials, and the field application of carbon nanotube cement slurry was achieved for the first time. The results of the DNCS cementing test show that the qualified ratio of cementing quality in the horizontal section reaches 98%. The sealing effect of the cement sheath was evaluated by borehole microseismic monitoring technology, and the microseismic event in the off-design area during the fracturing process is 0, indicating that the cement sheath is well sealed. The DNCS provides a technical support for the efficient and low-cost development of shale gas.
-
Keywords:
- shale gas /
- slim hole /
- cementing /
- carbon nanotubes /
- ductile nano-cement slurry /
- three-stage mixing
-
ITT区块是厄瓜多尔最大的产油区块,位于该国东部亚马逊热带雨林腹地Oriente盆地的东南部,毗邻秘鲁边界。ITT区块已探明石油地质储量约8.5×108 t,可采石油储量达到2.2×108 t,占该国已探明石油储量的41%。ITT区块由Ishpingo、Tiputini和Tambococha等3个油田组成,其中Tambococha油田位于亚苏尼国家自然保护区内,井场周围遍布河流及热带雨林,钻井环保要求苛刻,区域地质沉积属于海相环境沉积,主要地层为古近系–新近系和白垩系。白垩系是其开发的主要目的层,自下而上由Hollin组、Napo组 和 Tena组组成,地层松散破碎,微孔裂缝发育,井壁垮塌和储层保护问题突出。
Tambococha油田勘探开发前期,普遍使用无机盐聚合物钻井液或ULTRADRIL强抑制性水基钻井液,但未从根本上解决该油田井眼易失稳和储层伤害问题[1-2]。为此,笔者开展了钻井液技术分析和室内试验,利用聚合醇浊点效应和环境友好的特点,复配乳化石蜡和其他刚性粒子,研制了强封堵储层保护钻井液,并在现场应用中取得良好效果,满足了Tambococha油田水平井安全钻井及储层保护技术要求。
1. 钻井液技术难点及解决思路
1.1 钻井液技术难点
Tambococha油田水平井下部井段钻遇的Hollin组、Napo组和Tena组以页岩为主,灰岩和砂岩交替发育,并夹杂大段绿色砾石层,且微裂缝发育,地层比较复杂,钻井中经常发生井下故障。分析认为,该油田主要存在以下钻井液技术难点:
1)井眼失稳问题。Tambococha油田下部地层中的泥页岩由伊利石和伊/蒙混层组成,蒙脱石较少,内部微孔微裂缝较多,且产层砂岩孔隙度大,渗透性强,井壁上容易堆积较厚滤饼;加之水平井设计成了大尺寸井眼、长裸眼段,更加剧了地层的不稳定性。其中,水平段所钻遇地层灰岩和砂岩交替发育,地层松散破碎且微裂缝发育,微裂缝中含有极少量的膨胀性黏土矿物,在钻井液滤液侵入后,由于渗透水化作用,进一步破坏了地层原始应力的稳定性,进而引发井壁垮塌等井眼失稳问题。
2)储层损害问题。Tambococha油田储层Napo组地层胶结疏松、成岩性差,具有高孔隙度、高渗透率、孔喉普遍发育和地层压力低等特点。Napo组孔隙度为15%~23%,渗透率为600~1 000 mD。由于储层孔喉尺寸分布范围广,孔喉半径大,且通常采用过平衡钻井方式,在正压差作用下,钻井液中的固相和滤液很容易侵入地层,造成严重的储层损害问题。
3)钻井环保问题。Tambococha油田处于亚苏尼热带雨林国家自然保护区内,生态环境极其敏感,该油田勘探开发产生的环境问题得到当地社区和政府的高度关注。为保护生态环境,厄瓜多尔政府颁布的最新石油法中明确规定,钻井废弃物处理后必须达到美国EPA1311环保标准要求。因此,对钻井液环保性能提出了较高的要求。
1.2 解决思路
针对上述钻井液技术难点,在优选环保处理剂的前提下,提出了构建Tambococha油田水平井钻井液的思路:1)利用钻井液物理–化学协同封堵来强化井壁,同时辅助一定的固相封堵架桥材料及聚合物降滤失剂,实现对泥页岩微裂缝和微孔隙的封堵,并抑制黏土矿物水化膨胀分散,以防止井眼失稳;2)针对该油田储层高孔渗、低压力的特点,以屏蔽暂堵颗粒合理级配、微乳液封堵,实现孔喉暂堵,降低储层伤害[3-15];3)优选出具有浊点效应的聚合醇处理剂和可变形粒子的乳化石蜡处理剂,进行复配试验,再辅助其他环保钻井液处理剂,形成强封堵储层保护水基钻井液配方。
2. 强封堵储层保护水基钻井液的研制
2.1 防塌封堵剂优选
利用聚合醇类处理剂的浊点效应、吸附作用和表面渗透性等实现页岩抑制、封堵、防塌的目的。为此,选取了液体聚合醇XCS-Ⅲ、聚丙二醇400、固体聚合醇PGCS-1和聚乙二醇6000作为防塌封堵剂,并通过页岩膨胀试验评价了抑制性能。页岩在几种聚合醇溶液中的线性膨胀量测试结果见表1。
表 1 页岩在不同聚合醇溶液中的线性膨胀量Table 1. Linear expansion of shale in different polyalcohol solutions序号 样品 加量, % 线性膨胀量/(mm·h–1) 20 min 1 h 2 h 4 h 8 h 1 清水 0.70 1.03 1.43 1.93 2.55 2 PGSC-1 3 0.48 0.78 1.05 1.42 1.83 3 XCS-Ⅲ 3 0.30 0.55 0.78 1.12 1.53 4 聚丙二醇400 3 0.55 0.80 1.35 1.80 2.35 5 聚乙二醇6000 3 0.50 0.85 1.17 1.63 2.16 由表1可知,几种聚合醇溶液的抑制性能由强到弱依次为XCS-Ⅲ,PGSC-1,聚乙二醇6000和聚丙二醇400。因此,选取聚合醇XCS-Ⅲ作为强封堵储层保护水基钻井液的防塌封堵剂。
另外,乳化石蜡G325具有较低的粒子软化温度,可为钻井液提供与地层温度相适应的、粒径与被封堵微裂缝尺寸相匹配的、可变形的软化粒子,从而实现对各类微裂缝的有效封堵,达到保持井眼稳定的目的。因此,选取乳化石蜡G325与聚合醇XCS-Ⅲ复配,进行正交回收率试验。结果表明,乳化石蜡G325有助于进一步提高岩屑的热滚回收率,二次回收率达到85%以上,两者协同效应显著且复配性能稳定。因此,将聚合醇XCS-Ⅲ与石蜡G325复配来配制强封堵储层保护水基钻井液。
2.2 降滤失剂优选
选取目前几种降滤失效果较好的聚合物降滤失剂和封堵型降滤失剂(磺化沥青、白沥青、低黏聚阴离子纤维素PAC-LV、天然高分子降滤失剂和羟丙基淀粉等)进行了常温中压滤失试验。结果表明,这几种降滤失剂均能使4%膨润土浆的滤失量降低,其中PAC-LV的降滤失效果最好。因此,以PAC-LV为配制强封堵储层保护水基钻井液的主降滤失剂,并以白沥青为辅降滤失剂。
2.3 润滑剂优选
水平井水平段钻进过程中,钻井液的润滑减阻性能非常重要。为此,分别选取DFL-1、GHR-1、MudLube和JN302等4种油基润滑剂进行了润滑性能评价试验。试验步骤及结果:1)利用极压润滑仪,测试4%膨润土浆加入上述4种润滑剂前后的润滑系数,分析测试结果发现,润滑效果由好到差依次为MudLube,DFL-1,GHR-1和JN302;2)借助DA-II动态模拟润滑仪,测试了上述4种润滑剂在不同侧向力条件下的摩擦系数,观察了MudLube在不同侧向力下的润滑性能,发现随着MudLube加量增大,不同侧向力下的摩擦系数和扭矩逐渐降低,体系表现出良好的润滑效果,当MudLube的加量超过2%时,摩擦系数和扭矩均趋于稳定。因此,选择MudLube作为强封堵储层保护水基钻井液的主要润滑剂。
2.4 强封堵储层保护水基钻井液配方及基本性能
通过以上试验,确定了XCS-Ⅲ+G325的防塌封堵钻井液主体配方,结合筛选的润滑剂、降滤失剂,再辅以其他环保处理剂,确定强封堵储层保护水基钻井液(以下记为AKUA钻井液)的基本配方为:0.5%~1.5% XCS-Ⅲ + 1.0%~3.0% G325 + 0.2%~0.3% XC + 0.1%~0.3% PAV-HV + 0.5%~1.5% PAC-LV + 1.0%~3.0% 白沥青+ 1.0%~3.0% MudLube。用石灰石加重,使钻井液密度在1.05~1.25 kg/L,用碱度调节剂调节其pH值至8~9。AKUA钻井液基本配方的基本性能如表2所示。
表 2 AKUA钻井液的基本性能Table 2. Basic properties of AKUA drilling fluid测定条件 漏斗黏度/s API滤失量/mL 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa 初切 终切 常温 45~70 5~7 15~25 10~25 2~4 4~10 100 ℃/16 h 35~55 3~5 10~20 7~18 1~3 2~8 注:钻井液密度为1.05~1.25 kg/L。 3. 钻井液性能评价
根据厄瓜多尔Tambococha油田水平井钻遇的下部地层地质特点,通过室内试验评价AKUA钻井液的抑制性能、封堵性能、储层保护及环保性能,以确定该钻井液的性能是否满足要求。
3.1 抑制性能
利用OFI膨胀量测试仪,在室温下测试了页岩在几种钻井液滤液中的线性膨胀量,结果见图1。由图1可知,页岩在AKUA钻井液中的线性膨胀量最小,与其在清水中的线性膨胀量相比,降低了64.8%,表明该钻井液具有良好的抑制页岩膨胀的性能。
3.2 封堵性能
Tambococha油田主力油层Napo组的U层和T层属于高孔高渗低压储层,渗透率600~1 000 mD,孔隙度18%~20%,利用理想充填原理计算出其平均孔隙直径为42 μm。用碳酸钙屏蔽暂堵储层,由理想充填模型计算得知,在渗透率为800 mD、孔隙度为20%时,最大孔喉直径为41 μm ,即碳酸钙粒径分布为D90=41.3 μm、D50=12.5 μm、D10=0.5 μm,就能实现孔隙封堵。100目石灰石和325目石灰石按3∶1复配,计算出其加量为10%时的粒径分布曲线与理想充填曲线拟合地较好,能实现有效封堵(如图2所示)。
3.3 储层岩心伤害评价
选取Tambococha油田主力储层Napo组U层的3块岩心,利用岩心动态伤害系统进行了伤害评价试验。试验步骤:1)测试岩心渗透率;2)对岩心进行污染,以形成暂堵带,以6 mL/min的流量,将AKUA基浆驱入岩心,当岩心进口压力达到3.5 MPa时,保持此压力,直至出口端基本没有液体流出,此时污染完成;3)用煤油对岩心进行反向驱替,待煤油开始突破暂堵带时,记录下此时的压力(突破压力)及反排压力,并记录反向流动试验时间。试验结果见表3。
表 3 岩心反排试验结果Table 3. Test results of core flowback岩心编号 原始渗透率/mD 反向渗透率/mD 突破压力/MPa 反排压力/MPa 岩心伤害率,% 反排时间/min 1# 735.58 643.72 0.15 0.17 12.49 30 2# 793.33 720.23 0.14 0.15 9.21 30 3# 814.86 741.02 0.11 0.12 9.06 30 由表3可知,在模拟地层条件下,AKUA钻井液对岩心的伤害率平均只有10.25%,表明AKUA钻井液具有良好的降低油层损害的性能。
3.4 环保性能
目前,国内外普遍使用水质五日生化需氧量与水质化学需氧量之比(BOD5/COD),来考察有机物的生物可降解性。评价试验参照标准“水质:化学需氧量的测定:重铬酸盐法”(HJ 828—2017)和“水质:五日生化需氧量(BOD5)的测定:稀释与接种法”( HJ 505—2009)进行。参考石油天然气行业标准“水溶性油田化学剂环境保护技术评价方法”(SY/T 6788—2010)和“水溶性油田化学剂环境保护技术要求”(SY/T 6787—2010),用BOD5/COD评价生物可降解性,标准为:Y=BOD5/COD,Y≥0.05,易;0.01≤Y<0.05,较难;Y<0.01,难。使用哈希COD max plus sc型分析仪和哈希BOD Trak II型分析仪测定AKUA钻井液的COD和BOD5,AKUA钻井液的BOD5/COD为0.440,表明其易生物降解。
采用发光细菌法,通过显微毒性试验评价钻井液的环保性能。该方法是加拿大测试海上钻井液生物毒性的标准方法之一。采用石油天然气行业标准“水溶性油田化学剂环境保护技术评价方法”(SY/T 6788—2010)中的EC50评价钻井液的生物毒性:EC50<1,剧毒;1<EC50<1 000,中毒;1 001<EC50<20 000,微毒;EC50>20 000,无毒。AKUA钻井液的EC50为51 200,表明其无毒。
4. 现场应用
研制的强封堵储层保护水基钻井液(AKUA钻井液)在厄瓜多尔Tambococha油田15口水平井进行了应用,均取得成功,钻井过程中井壁稳定、起下钻顺畅、套管均一次下到底,且钻屑环保指标能够达到美国EPA1311环保标准,可直接回注到地层。应用该钻井液,有效解决了Tambococha油田水平井钻速慢、易发生井下故障的问题,并多次打破该油田水平井钻井纪录,有效推进了Tambococha油田钻井提速提效。
分析表明,AKUA钻井液主要应用效果为:
1)井壁防塌效果明显。优选了适合地层孔隙尺寸的粒径级配封堵剂,然后与聚合醇进行复配,实现了井壁微裂缝封堵和抑制页岩膨胀分散,降低了井壁压力传递,使井径规则、井眼稳定、起下钻顺畅,下套管一次到底。进入水平段的砂岩地层后,AKUA钻井液密度控制在1.05~1.06 kg/L,起到了良好的井壁稳定能力。
2)润滑减阻性能优良。AKUA钻井液选用的主要处理剂聚合醇和乳化石蜡均具有良好的润滑作用,再配合高效润滑剂MudLube,使该钻井液的润滑性能更好,有效降低了摩阻。滑动钻进井段均未出现托压,起下钻畅通无阻。
3)储层保护效果显著。Tambococha油田水平井采用裸眼完井方式,用完井盐水顶替钻井液后下筛管直接投产,未采取任何储层改造措施。投产数据显示,应用AKUA钻井液的水平井均属于高产井,平均单井日产原油超过300 t,较邻井产量提高近90%,充分说明AKUA钻井液具有优良的储层保护特性,很大程度上降低了井筒中流体和固相颗粒对储层的污染损害。
4)环保检测达标。Tambococha油田产生的钻井废液及钻屑必须在指定的地点进行填埋,或直接回注到地层。考虑其外运成本高、周期长和环保风险大等因素,现场一般采用钻屑回注工艺,将钻井废液及钻屑直接回注到Napo组T层(垂深1 645.60~1 705.70 m)的砂岩地层。回注之前,当地环保部门聘请第三方检测机构对现场钻井废液和钻屑进行了取样检测。检测结果表明,应用AKUA 钻井液井产生的钻井废液和钻屑符合厄瓜多尔当地石油法规定的钻井废弃物排放环保标准,可直接回注到地层。现场钻井废液、钻屑的检验结果分别见表4、表5。
表 4 现场钻井废液检验结果Table 4. Test results of well site waste drilling fluids参数 pH值 电导率/(μS·cm–1) 固体悬浮物含量/(mg·L–1) 化学需氧量/(mg·L–1) 总烃/(mg·L–1) 重金属含量/(mg·L–1) 钡 铅 钒 总铬 排放标准 5.0~9.0 <2 500 <1 700 <120 <20 <5.0 <0.5 <1.0 <0.5 检测结果 8.4 295 527.58 13.88 0.06 0.3 0.15 0.4 0.1 表 5 现场钻屑检验结果Table 5. Test results of well site drilling cuttings参数 pH值 电导率/(μS·cm–1) 总烃/(mg·L–1) 重金属含量/(mg·L–1) 钡 铅 钒 总铬 排放标准 6.0~9.0 <4 000 <1.0 <0.05 <1.0 <0.2 <5.0 检测结果 7.4 2 350 0.8 <0.000 5 0.001 7 0.009 2 0.4 5. 结论与建议
1)针对厄瓜多尔Tambococha油田下部地层水平井井眼失稳、储层损害及钻井存在的环保问题,利用乳化液滴、浊点效应、微米颗粒及刚性粒子等的协同封堵作用,以阻止液相和固相侵入地层,研制了一种强封堵储层保护钻井液(AKUA钻井液)。
2)AKUA钻井液性能稳定、环保性能突出,且现场维护简便,不仅可满足地质、钻井需求,还能满足热带雨林环境敏感区域的钻井环保要求,可实现经济和环保的双重效益。
3)AKUA钻井液在现场应用中取得了很好的效果,主要表现为井眼稳定、起下钻顺畅。应用后平均单井日产原油超过300 t,较邻井提高产量近90%,为Tambococha油田钻井提速和规模上产提供了有力的技术支撑。
4)建议继续研发新型钻井液处理剂,优化AKUA钻井液配方,提高该钻井液的综合性能,然后在厄瓜多尔ITT区块水平井长水平段全面推广应用。
-
表 1 不同配方水泥浆关键材料的加量
Table 1 Dosage of key materials for different formulations of cement slurry
配方 纤维加量,% CNTs加量,% 降滤失剂
加量,%油井水泥分散剂
加量,%A0 0 0 0.40 0.30 A1 0.50 0 0.40 0.32 A2 0.50 0.02 0.40 0.35 A3 0.50 0.04 0.40 0.40 A4 0.50 0.06 0.40 0.45 A5 1.00 0 0.40 0.32 A6 1.00 0.02 0.40 0.35 A7 1.00 0.04 0.40 0.40 A8 1.00 0.06 0.40 0.45 表 2 水泥浆综合性能测试结果
Table 2 Comprehensive performance test results of cement slurries
水泥浆配方 滤失量/mL 游离液含量,% 上下层密度差/(kg·L−1) 稠度系数 流性指数/( Pa·sn) 稠化时间/min A0 52 0 0.002 0.79 0.27 134 A8 42 0 0 0.89 0.20 131 -
[1] 朱维耀,陈震,宋智勇,等. 中国页岩气开发理论与技术研究进展[J]. 工程科学学报,2021,43(10):1397–1412. ZHU Weiyao, CHEN Zhen, SONG Zhiyong, et al. Research progress in theories and technologies of shale gas development in China[J]. Chinese Journal of Engineering, 2021, 43(10): 1397–1412.
[2] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1–14. doi: 10.3787/j.issn.1000-0976.2021.01.001 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1–14. doi: 10.3787/j.issn.1000-0976.2021.01.001
[3] 贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152. JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152.
[4] 张金川,史淼,王东升,等. 中国页岩气勘探领域和发展方向[J]. 天然气工业,2021,41(8):69–80. doi: 10.3787/j.issn.1000-0976.2021.08.007 ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69–80. doi: 10.3787/j.issn.1000-0976.2021.08.007
[5] 周安富,谢伟,邱峋晰,等. 泸州区块龙一14小层页岩气勘探开发潜力[J]. 特种油气藏,2022,29(6):20–28. ZHOU Anfu, XIE Wei, QIU Xunxi, et al. On exploration and development potential of shale gas in Longyi14 sub-bed in Luzhou Block[J]. Special Oil & Gas Reserviors, 2022, 29(6): 20–28.
[6] 杜燕,刘超,高潮,等. 鄂尔多斯盆地延长探区陆相页岩气勘探开发进展、挑战与展望[J]. 中国石油勘探,2020,25(2):33–42. doi: 10.3969/j.issn.1672-7703.2020.02.004 DU Yan, LIU Chao, GAO Chao, et al. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(2): 33–42. doi: 10.3969/j.issn.1672-7703.2020.02.004
[7] 李治衡,李进,张磊,等. 渤海油田小间隙环空固井技术及应用[J]. 非常规油气,2019,6(1):94–100. doi: 10.3969/j.issn.2095-8471.2019.01.016 LI Zhiheng, LI Jin, ZHANG Lei, et al. Study and application of small clearance cementing technique in Bohai Oilfield[J]. Unconventional Oil & Gas, 2019, 6(1): 94–100. doi: 10.3969/j.issn.2095-8471.2019.01.016
[8] 赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012 ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012
[9] 张驰,周彤,肖佳林,等. 涪陵页岩气田加密井压裂技术的实践与认识[J]. 断块油气田,2022,29(6):775–779. ZHANG Chi, ZHOU Tong, XIAO Jialin, et al. Practice and knowledge of fracturing technology for infill wells in Fuling Shale Gas Field[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 775–779.
[10] 何吉标,彭小平,刘俊君,等. 抗高交变载荷水泥浆的研制及其在涪陵页岩气井的应用[J]. 石油钻探技术,2020,48(3):35–40. doi: 10.11911/syztjs.2020054 HE Jibiao, PENG Xiaoping, LIU Junjun, et al. Development of an anti-deformation cement slurry under alternative loading and its application in Fuling shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 35–40. doi: 10.11911/syztjs.2020054
[11] 苏东华,黄盛,李早元,等. 页岩油水平井压裂水泥环力学性能设计方法[J]. 石油勘探与开发,2022,49(4):798–805. doi: 10.11698/PED.20220019 SU Donghua, HUANG Sheng, LI Zaoyuan, et al. Mechanical property design method of cement sheath in a horizontal shale oil well under fracturing conditions[J]. Petroleum Exploration and Development, 2022, 49(4): 798–805. doi: 10.11698/PED.20220019
[12] 李子丰,张永贵,阳鑫军. 蠕变地层与油井套管相互作用力学模型[J]. 石油学报,2009,30(1):129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026 LI Zifeng, ZHANG Yonggui, YANG Xinjun. Mechanics model for interaction between creep formation and oil well casing[J]. Acta Petrolei Sinica, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026
[13] 李成嵩,李社坤,范明涛,等. 水平井压裂过程中固井界面裂缝的扩展规律[J]. 钻井液与完井液,2022,39(6):761–766. LI Chengsong, LI Shekun, FAN Mingtao, et al. Rule of propagation of fractures through the bonding interfaces of cement sheath in horizontal well fracturing[J]. Drilling Fluid & Completion Fluid, 2022, 39(6): 761–766.
[14] 王涛,申峰,展转盈,等. 高强微弹水泥浆在延长油田致密油水平井中的应用[J]. 石油钻探技术,2019,47(5):40–48. WANG Tao, SHEN Feng, ZHAN Zhuaiying, et al. The application of high-strength micro-elastic cement slurry in the tight oil horizontal wells of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 40–48.
[15] 张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. doi: 10.11911/syztjs.2022097 ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21. doi: 10.11911/syztjs.2022097
[16] 李士斌,官兵,张立刚,等. 水平井压裂裂缝局部应力场扰动规律[J]. 油气地质与采收率,2016,23(6):112–119. doi: 10.3969/j.issn.1009-9603.2016.06.019 LI Shibin, GUAN Bing, ZHANG Ligang, et al. Local stress field disturbance law of horizontal well fracturing[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(6): 112–119. doi: 10.3969/j.issn.1009-9603.2016.06.019
[17] 范明涛,李军,柳贡慧. 页岩地层体积压裂过程中水泥环完整性研究[J]. 石油机械,2017,45(8):45–49. doi: 10.16082/j.cnki.issn.1001-4578.2017.08.010 FAN Mingtao, LI Jun, LIU Gonghui. Study on cement sheath integrity in shale formation fracturing process[J]. China Petroleum Machinery, 2017, 45(8): 45–49. doi: 10.16082/j.cnki.issn.1001-4578.2017.08.010
[18] 何立成. 胜利油田沙河街组页岩油水平井固井技术[J]. 石油钻探技术,2022,50(2):45–50. doi: 10.11911/syztjs.2022062 HE Licheng. A cementing technology for horizontal shale oil wells in Shahejie Formation of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 45–50. doi: 10.11911/syztjs.2022062
[19] 张成金,冷永红,李美平,等. 聚丙烯纤维水泥浆体系防漏增韧性能研究与应用[J]. 天然气工业,2008,28(1):91–93. doi: 10.3787/j.issn.1000-0976.2008.01.025 ZHANG Chengjin, LENG Yonghong, LI Meiping, et al. Property studies and application of leak protection and flexibility of mekralon mud[J]. Natural Gas Industry, 2008, 28(1): 91–93. doi: 10.3787/j.issn.1000-0976.2008.01.025
[20] 郝华中,桑明,张晔,等. 耐碱玻璃纤维增韧水泥石力学性能及对水泥浆性能影响[J]. 钻采工艺,2020,43(5):134–138. doi: 10.3969/J.ISSN.1006-768X.2020.05.38 HAO Huazhong, SANG Ming, ZHANG Ye, et al. Mechanical properties of alkali-resistant glass fiber toughened cement and its influence on cement slurry properties[J]. Drilling & Production Technology, 2020, 43(5): 134–138. doi: 10.3969/J.ISSN.1006-768X.2020.05.38
[21] 李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液, 2021, 38(5): 623-627. LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 623-627.
[22] 刘慧婷,刘硕琼,冯宇思,等. 碳纳米管的掺入对油井水泥浆性能的影响[J]. 硅酸盐通报,2015,34(2):456–460. doi: 10.16552/j.cnki.issn1001-1625.2015.02.032 LIU Huiting, LIU Shuoqiong, FENG Yusi, et al. Impact of carbon nanotube addition on properties of cement paste[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 456–460. doi: 10.16552/j.cnki.issn1001-1625.2015.02.032
[23] 冯宇思,刘硕琼,刘慧婷,等. 碳纳米管改性水泥石力学性能研究[J]. 钻井液与完井液,2018,35(6):93–97. doi: 10.3969/j.issn.1001-5620.2018.06.017 FENG Yusi, LIU Shuoqiong, LIU Huiting, et al. Study on mechanical performance of set cement modified with CNT[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 93–97. doi: 10.3969/j.issn.1001-5620.2018.06.017
[24] 陈立超, 张典坤, 吕帅锋. 碳纳米管复合固井水泥动静态断裂性能试验研究[J]. 材料导报, 2022, 36(增刊2): 148−153. CHEN Lichao, ZHANG Diankun, LYU Shuaifeng. Experimental study on dynamic and static fracture performance of carbon nanotubes cement[J]. Materials Reports, 2022, 36(supplement 2): 148−153.
[25] 武玺旺,肖建中,夏风,等. 碳纳米管的分散方法与分散机理[J]. 材料导报,2011,25(9):16–19. WU Xiwang, XIAO Jianzhong, XIA Feng, et al. Dispersion methods and dispersion mechanism of carbon nanotubes[J]. Materials Review, 2011, 25(9): 16–19.
[26] 王涛,窦倩,贾红军. 酰胺改性碳纳米管对固井水泥浆性能的影响[J]. 钻井液与完井液,2020,37(1):103–109. WANG Tao, DOU Qian, JIA Hongjun. Effects of amide-modified CNTs on properties of cement slurry[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 103–109.
[27] 郭小阳, 李早元, 辜涛, 等. 复杂油气藏固井液技术研究与应用[M]. 北京: 科学出版社, 2017: 192 − 199. GUO Xiaoyang, LI Zaoyuan, GU Tao, et al. Research and application of cementing fluid technology in complex oil and gas reservoirs[M]. Beijing: Science Press, 2017: 192 − 199.
[28] 步玉环,穆海朋,王瑞和,等. 复杂应力环境下纤维水泥阻裂机理实验研究[J]. 石油学报,2008,29(6):922–926. doi: 10.3321/j.issn:0253-2697.2008.06.026 BU Yuhuan, MU Haipeng, WANG Ruihe, et al. Crack resistance mechanism of fiber cement under the action of complex stress[J]. Acta Petrolei Sinica, 2008, 29(6): 922–926. doi: 10.3321/j.issn:0253-2697.2008.06.026
[29] LIU Huiting, JIN Jianzhou, YU Yongjin, et al. Influence of halloysite nanotube on hydration products and mechanical properties of oil well cement slurries with nano-silica[J]. Construction and Building Materials, 2020, 247: 118545. doi: 10.1016/j.conbuildmat.2020.118545
[30] 张楠楠,李云龙,刘锦红,等. 玄武岩粉对海工胶凝材料性能及水化的影响[J]. 硅酸盐通报,2020,39(7):2204–2210. doi: 10.16552/j.cnki.issn1001-1625.20200311.001 ZHANG Nannan, LI Yunlong, LIU Jinhong, et al. Effect of the addition of basalt powder on properties and hydration of marine cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2204–2210. doi: 10.16552/j.cnki.issn1001-1625.20200311.001
[31] 牛荻涛,何嘉琦,傅强,等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报,2020,48(5):705–717. doi: 10.14062/j.issn.0454-5648.2020.05.20190638 NIU Ditao, HE Jiaqi, FU Qiang, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 705–717. doi: 10.14062/j.issn.0454-5648.2020.05.20190638
[32] 窦倩,王涛,张书勤,等. 碳纳米管固井水泥复合材料抗腐蚀及力学性能研究[J]. 硅酸盐通报,2019,38(11):3703–3711. doi: 10.16552/j.cnki.issn1001-1625.2019.11.050 DOU Qian, WANG Tao, ZHANG Shuqin, et al. Research on corrosion resistance and mechanical properties of carbon nanotubes reinforced cement-based composites[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3703–3711. doi: 10.16552/j.cnki.issn1001-1625.2019.11.050
[33] EL-GAMAL S M A, HASHEM F S, AMIN M S. Influence of carbon nanotubes, nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature[J]. Construction and Building Materials, 2017, 146: 531–546. doi: 10.1016/j.conbuildmat.2017.04.124
[34] 马振锋,于小龙,杨全枝,等. 陆相页岩气水平井钻井提速技术[J]. 非常规油气,2017,4(4):88–92. doi: 10.3969/j.issn.2095-8471.2017.04.014 MA Zhenfeng, YU Xiaolong, YANG Quanzhi, et al. The technology of improving rate of penetration in continental shale gas horizontal well[J]. Unconventional Oil & Gas, 2017, 4(4): 88–92. doi: 10.3969/j.issn.2095-8471.2017.04.014
[35] 匡立新,陶谦. 渝东地区常压页岩气水平井充氮泡沫水泥浆固井技术[J]. 石油钻探技术,2022,50(3):39–45. KUANG Lixin, TAO Qian. Cementing technology using a nitrogen-filled foamed cement slurry for horizontal shale gas wells in the eastern Chongqing area[J]. Petroleum Drilling Techniques, 2022, 50(3): 39–45.
[36] 席岩,李方园,王松,等. 利用预应力固井方法预防水泥环微环隙研究[J]. 特种油气藏,2021,28(6):144–150. doi: 10.3969/j.issn.1006-6535.2021.06.019 XI Yan, LI Fangyuan, WANG Song, et al. Study on prevention of micro-annulus in cement sheath by prestressed cementing method[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 144–150. doi: 10.3969/j.issn.1006-6535.2021.06.019
[37] 谢关宝,滕春鸣,柳华杰. 盐岩蠕变对水泥环气密封完整性影响规律研究[J]. 石油钻探技术,2022,50(2):78–84. doi: 10.11911/syztjs.2021113 XIE Guanbao, TENG Chunming, LIU Huajie. Study on the influence of salt rock creep on the integrity of cement sheath gas seals[J]. Petroleum Drilling Techniques, 2022, 50(2): 78–84. doi: 10.11911/syztjs.2021113
[38] 丁士东,刘奎,刘小刚,等. 环空加压固井对双层套管水泥环界面径向应力的影响[J]. 石油钻探技术,2022,50(1):30–37. doi: 10.11911/syztjs.2021052 DING Shidong, LIU Kui, LIU Xiaogang, et al. The effect of pre-applied annulus back pressure cementing on radial stress of interfaces in double layer casing systems[J]. Petroleum Drilling Techniques, 2022, 50(1): 30–37. doi: 10.11911/syztjs.2021052
[39] SZELĄG M. Evaluation of cracking patterns of cement paste containing polypropylene fibers[J]. Composite Structures, 2019, 220: 402–411. doi: 10.1016/j.compstruct.2019.04.038
[40] KRUSZEWSKI M, MONTEGROSSI G, RAMÍREZ MONTES M, et al. A wellbore cement sheath damage prediction model with the integration of acoustic wellbore measurements[J]. Geothermics, 2019, 80: 195–207. doi: 10.1016/j.geothermics.2019.03.007
-
期刊类型引用(4)
1. 曾皓,金衍,王海波. 宁东油田致密油储层损害机理与对策. 石油钻探技术. 2024(01): 62-68 . 本站查看
2. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
3. 厉明伟,周建民,秦涛,王志,王伟,邱春阳. 聚胺复合盐润滑防塌钻井液在孤东斜288井的应用. 兰州石化职业技术大学学报. 2024(03): 13-16 . 百度学术
4. 唐凯,潘宇强,沈明华. 防水窜水泥浆体系的研究与应用. 钻采工艺. 2023(02): 27-34 . 百度学术
其他类型引用(0)