Ductile Nano-Cement Slurry Cementing for Slim-Hole Horizontal Shale Gas Wells
-
摘要:
为了提高页岩气小井眼水平井固井质量,保证水泥环压裂封隔效果及压裂后的完整性,研究了纳米增韧水泥浆及其配套技术。采用纤维复配碳纳米管,研制了纳米增韧水泥浆,其形成的水泥石具有低模量、高抗拉的特点。与常规水泥石相比,纳米增韧水泥石的弹性模量降低50.9%,抗压强度提高28.1%,抗拉强度最高可达5.2 MPa。同时,研究了配套的碳纳米管三级混配工艺,解决了大剂量纳米材料易缠绕、难分散的问题,首次实现了碳纳米管水泥浆的现场应用。纳米增韧水泥浆固井试验结果表明,水平段固井质量合格率达98%;采用微地震井中监测技术评价了纳米增韧水泥环封隔效果,压裂过程中设计外区域的微地震事件为0,表明纳米增韧水泥环封隔良好。研究表明,纳米增韧水泥浆可为页岩气高效低成本开发提供技术支撑。
Abstract:To improve the cementing quality of slim-hole horizontal shale gas wells and ensure the sealing effect of the cement sheath while fracturing and the integrity after fracturing, a ductile nano-cement slurry (DNCS) and its associated technologies were studied. The DNCS was developed by using carbon nanotubes compounded with fibers, which had the properties of low elastic modulus and high tensile strength. Compared with conventional cement, the elastic modulus of ductile nano-cement was reduced by 50.9%; the compressive strength was increased by 28.1%; the maximum tensile strength could reach 5.2 MPa. An associated carbon nanotube three-stage mixing technology was studied, which solved the problems of entanglement and difficult dispersion of large doses of nanomaterials, and the field application of carbon nanotube cement slurry was achieved for the first time. The results of the DNCS cementing test show that the qualified ratio of cementing quality in the horizontal section reaches 98%. The sealing effect of the cement sheath was evaluated by borehole microseismic monitoring technology, and the microseismic event in the off-design area during the fracturing process is 0, indicating that the cement sheath is well sealed. The DNCS provides a technical support for the efficient and low-cost development of shale gas.
-
Keywords:
- shale gas /
- slim hole /
- cementing /
- carbon nanotubes /
- ductile nano-cement slurry /
- three-stage mixing
-
-
表 1 不同配方水泥浆关键材料的加量
Table 1 Dosage of key materials for different formulations of cement slurry
配方 纤维加量,% CNTs加量,% 降滤失剂
加量,%油井水泥分散剂
加量,%A0 0 0 0.40 0.30 A1 0.50 0 0.40 0.32 A2 0.50 0.02 0.40 0.35 A3 0.50 0.04 0.40 0.40 A4 0.50 0.06 0.40 0.45 A5 1.00 0 0.40 0.32 A6 1.00 0.02 0.40 0.35 A7 1.00 0.04 0.40 0.40 A8 1.00 0.06 0.40 0.45 表 2 水泥浆综合性能测试结果
Table 2 Comprehensive performance test results of cement slurries
水泥浆配方 滤失量/mL 游离液含量,% 上下层密度差/(kg·L−1) 稠度系数 流性指数/( Pa·sn) 稠化时间/min A0 52 0 0.002 0.79 0.27 134 A8 42 0 0 0.89 0.20 131 -
[1] 朱维耀,陈震,宋智勇,等. 中国页岩气开发理论与技术研究进展[J]. 工程科学学报,2021,43(10):1397–1412. ZHU Weiyao, CHEN Zhen, SONG Zhiyong, et al. Research progress in theories and technologies of shale gas development in China[J]. Chinese Journal of Engineering, 2021, 43(10): 1397–1412.
[2] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1–14. doi: 10.3787/j.issn.1000-0976.2021.01.001 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1–14. doi: 10.3787/j.issn.1000-0976.2021.01.001
[3] 贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152. JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152.
[4] 张金川,史淼,王东升,等. 中国页岩气勘探领域和发展方向[J]. 天然气工业,2021,41(8):69–80. doi: 10.3787/j.issn.1000-0976.2021.08.007 ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69–80. doi: 10.3787/j.issn.1000-0976.2021.08.007
[5] 周安富,谢伟,邱峋晰,等. 泸州区块龙一14小层页岩气勘探开发潜力[J]. 特种油气藏,2022,29(6):20–28. ZHOU Anfu, XIE Wei, QIU Xunxi, et al. On exploration and development potential of shale gas in Longyi14 sub-bed in Luzhou Block[J]. Special Oil & Gas Reserviors, 2022, 29(6): 20–28.
[6] 杜燕,刘超,高潮,等. 鄂尔多斯盆地延长探区陆相页岩气勘探开发进展、挑战与展望[J]. 中国石油勘探,2020,25(2):33–42. doi: 10.3969/j.issn.1672-7703.2020.02.004 DU Yan, LIU Chao, GAO Chao, et al. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(2): 33–42. doi: 10.3969/j.issn.1672-7703.2020.02.004
[7] 李治衡,李进,张磊,等. 渤海油田小间隙环空固井技术及应用[J]. 非常规油气,2019,6(1):94–100. doi: 10.3969/j.issn.2095-8471.2019.01.016 LI Zhiheng, LI Jin, ZHANG Lei, et al. Study and application of small clearance cementing technique in Bohai Oilfield[J]. Unconventional Oil & Gas, 2019, 6(1): 94–100. doi: 10.3969/j.issn.2095-8471.2019.01.016
[8] 赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012 ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012
[9] 张驰,周彤,肖佳林,等. 涪陵页岩气田加密井压裂技术的实践与认识[J]. 断块油气田,2022,29(6):775–779. ZHANG Chi, ZHOU Tong, XIAO Jialin, et al. Practice and knowledge of fracturing technology for infill wells in Fuling Shale Gas Field[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 775–779.
[10] 何吉标,彭小平,刘俊君,等. 抗高交变载荷水泥浆的研制及其在涪陵页岩气井的应用[J]. 石油钻探技术,2020,48(3):35–40. doi: 10.11911/syztjs.2020054 HE Jibiao, PENG Xiaoping, LIU Junjun, et al. Development of an anti-deformation cement slurry under alternative loading and its application in Fuling shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 35–40. doi: 10.11911/syztjs.2020054
[11] 苏东华,黄盛,李早元,等. 页岩油水平井压裂水泥环力学性能设计方法[J]. 石油勘探与开发,2022,49(4):798–805. doi: 10.11698/PED.20220019 SU Donghua, HUANG Sheng, LI Zaoyuan, et al. Mechanical property design method of cement sheath in a horizontal shale oil well under fracturing conditions[J]. Petroleum Exploration and Development, 2022, 49(4): 798–805. doi: 10.11698/PED.20220019
[12] 李子丰,张永贵,阳鑫军. 蠕变地层与油井套管相互作用力学模型[J]. 石油学报,2009,30(1):129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026 LI Zifeng, ZHANG Yonggui, YANG Xinjun. Mechanics model for interaction between creep formation and oil well casing[J]. Acta Petrolei Sinica, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026
[13] 李成嵩,李社坤,范明涛,等. 水平井压裂过程中固井界面裂缝的扩展规律[J]. 钻井液与完井液,2022,39(6):761–766. LI Chengsong, LI Shekun, FAN Mingtao, et al. Rule of propagation of fractures through the bonding interfaces of cement sheath in horizontal well fracturing[J]. Drilling Fluid & Completion Fluid, 2022, 39(6): 761–766.
[14] 王涛,申峰,展转盈,等. 高强微弹水泥浆在延长油田致密油水平井中的应用[J]. 石油钻探技术,2019,47(5):40–48. WANG Tao, SHEN Feng, ZHAN Zhuaiying, et al. The application of high-strength micro-elastic cement slurry in the tight oil horizontal wells of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 40–48.
[15] 张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. doi: 10.11911/syztjs.2022097 ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21. doi: 10.11911/syztjs.2022097
[16] 李士斌,官兵,张立刚,等. 水平井压裂裂缝局部应力场扰动规律[J]. 油气地质与采收率,2016,23(6):112–119. doi: 10.3969/j.issn.1009-9603.2016.06.019 LI Shibin, GUAN Bing, ZHANG Ligang, et al. Local stress field disturbance law of horizontal well fracturing[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(6): 112–119. doi: 10.3969/j.issn.1009-9603.2016.06.019
[17] 范明涛,李军,柳贡慧. 页岩地层体积压裂过程中水泥环完整性研究[J]. 石油机械,2017,45(8):45–49. doi: 10.16082/j.cnki.issn.1001-4578.2017.08.010 FAN Mingtao, LI Jun, LIU Gonghui. Study on cement sheath integrity in shale formation fracturing process[J]. China Petroleum Machinery, 2017, 45(8): 45–49. doi: 10.16082/j.cnki.issn.1001-4578.2017.08.010
[18] 何立成. 胜利油田沙河街组页岩油水平井固井技术[J]. 石油钻探技术,2022,50(2):45–50. doi: 10.11911/syztjs.2022062 HE Licheng. A cementing technology for horizontal shale oil wells in Shahejie Formation of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 45–50. doi: 10.11911/syztjs.2022062
[19] 张成金,冷永红,李美平,等. 聚丙烯纤维水泥浆体系防漏增韧性能研究与应用[J]. 天然气工业,2008,28(1):91–93. doi: 10.3787/j.issn.1000-0976.2008.01.025 ZHANG Chengjin, LENG Yonghong, LI Meiping, et al. Property studies and application of leak protection and flexibility of mekralon mud[J]. Natural Gas Industry, 2008, 28(1): 91–93. doi: 10.3787/j.issn.1000-0976.2008.01.025
[20] 郝华中,桑明,张晔,等. 耐碱玻璃纤维增韧水泥石力学性能及对水泥浆性能影响[J]. 钻采工艺,2020,43(5):134–138. doi: 10.3969/J.ISSN.1006-768X.2020.05.38 HAO Huazhong, SANG Ming, ZHANG Ye, et al. Mechanical properties of alkali-resistant glass fiber toughened cement and its influence on cement slurry properties[J]. Drilling & Production Technology, 2020, 43(5): 134–138. doi: 10.3969/J.ISSN.1006-768X.2020.05.38
[21] 李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液, 2021, 38(5): 623-627. LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 623-627.
[22] 刘慧婷,刘硕琼,冯宇思,等. 碳纳米管的掺入对油井水泥浆性能的影响[J]. 硅酸盐通报,2015,34(2):456–460. doi: 10.16552/j.cnki.issn1001-1625.2015.02.032 LIU Huiting, LIU Shuoqiong, FENG Yusi, et al. Impact of carbon nanotube addition on properties of cement paste[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 456–460. doi: 10.16552/j.cnki.issn1001-1625.2015.02.032
[23] 冯宇思,刘硕琼,刘慧婷,等. 碳纳米管改性水泥石力学性能研究[J]. 钻井液与完井液,2018,35(6):93–97. doi: 10.3969/j.issn.1001-5620.2018.06.017 FENG Yusi, LIU Shuoqiong, LIU Huiting, et al. Study on mechanical performance of set cement modified with CNT[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 93–97. doi: 10.3969/j.issn.1001-5620.2018.06.017
[24] 陈立超, 张典坤, 吕帅锋. 碳纳米管复合固井水泥动静态断裂性能试验研究[J]. 材料导报, 2022, 36(增刊2): 148−153. CHEN Lichao, ZHANG Diankun, LYU Shuaifeng. Experimental study on dynamic and static fracture performance of carbon nanotubes cement[J]. Materials Reports, 2022, 36(supplement 2): 148−153.
[25] 武玺旺,肖建中,夏风,等. 碳纳米管的分散方法与分散机理[J]. 材料导报,2011,25(9):16–19. WU Xiwang, XIAO Jianzhong, XIA Feng, et al. Dispersion methods and dispersion mechanism of carbon nanotubes[J]. Materials Review, 2011, 25(9): 16–19.
[26] 王涛,窦倩,贾红军. 酰胺改性碳纳米管对固井水泥浆性能的影响[J]. 钻井液与完井液,2020,37(1):103–109. WANG Tao, DOU Qian, JIA Hongjun. Effects of amide-modified CNTs on properties of cement slurry[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 103–109.
[27] 郭小阳, 李早元, 辜涛, 等. 复杂油气藏固井液技术研究与应用[M]. 北京: 科学出版社, 2017: 192 − 199. GUO Xiaoyang, LI Zaoyuan, GU Tao, et al. Research and application of cementing fluid technology in complex oil and gas reservoirs[M]. Beijing: Science Press, 2017: 192 − 199.
[28] 步玉环,穆海朋,王瑞和,等. 复杂应力环境下纤维水泥阻裂机理实验研究[J]. 石油学报,2008,29(6):922–926. doi: 10.3321/j.issn:0253-2697.2008.06.026 BU Yuhuan, MU Haipeng, WANG Ruihe, et al. Crack resistance mechanism of fiber cement under the action of complex stress[J]. Acta Petrolei Sinica, 2008, 29(6): 922–926. doi: 10.3321/j.issn:0253-2697.2008.06.026
[29] LIU Huiting, JIN Jianzhou, YU Yongjin, et al. Influence of halloysite nanotube on hydration products and mechanical properties of oil well cement slurries with nano-silica[J]. Construction and Building Materials, 2020, 247: 118545. doi: 10.1016/j.conbuildmat.2020.118545
[30] 张楠楠,李云龙,刘锦红,等. 玄武岩粉对海工胶凝材料性能及水化的影响[J]. 硅酸盐通报,2020,39(7):2204–2210. doi: 10.16552/j.cnki.issn1001-1625.20200311.001 ZHANG Nannan, LI Yunlong, LIU Jinhong, et al. Effect of the addition of basalt powder on properties and hydration of marine cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2204–2210. doi: 10.16552/j.cnki.issn1001-1625.20200311.001
[31] 牛荻涛,何嘉琦,傅强,等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报,2020,48(5):705–717. doi: 10.14062/j.issn.0454-5648.2020.05.20190638 NIU Ditao, HE Jiaqi, FU Qiang, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 705–717. doi: 10.14062/j.issn.0454-5648.2020.05.20190638
[32] 窦倩,王涛,张书勤,等. 碳纳米管固井水泥复合材料抗腐蚀及力学性能研究[J]. 硅酸盐通报,2019,38(11):3703–3711. doi: 10.16552/j.cnki.issn1001-1625.2019.11.050 DOU Qian, WANG Tao, ZHANG Shuqin, et al. Research on corrosion resistance and mechanical properties of carbon nanotubes reinforced cement-based composites[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3703–3711. doi: 10.16552/j.cnki.issn1001-1625.2019.11.050
[33] EL-GAMAL S M A, HASHEM F S, AMIN M S. Influence of carbon nanotubes, nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature[J]. Construction and Building Materials, 2017, 146: 531–546. doi: 10.1016/j.conbuildmat.2017.04.124
[34] 马振锋,于小龙,杨全枝,等. 陆相页岩气水平井钻井提速技术[J]. 非常规油气,2017,4(4):88–92. doi: 10.3969/j.issn.2095-8471.2017.04.014 MA Zhenfeng, YU Xiaolong, YANG Quanzhi, et al. The technology of improving rate of penetration in continental shale gas horizontal well[J]. Unconventional Oil & Gas, 2017, 4(4): 88–92. doi: 10.3969/j.issn.2095-8471.2017.04.014
[35] 匡立新,陶谦. 渝东地区常压页岩气水平井充氮泡沫水泥浆固井技术[J]. 石油钻探技术,2022,50(3):39–45. KUANG Lixin, TAO Qian. Cementing technology using a nitrogen-filled foamed cement slurry for horizontal shale gas wells in the eastern Chongqing area[J]. Petroleum Drilling Techniques, 2022, 50(3): 39–45.
[36] 席岩,李方园,王松,等. 利用预应力固井方法预防水泥环微环隙研究[J]. 特种油气藏,2021,28(6):144–150. doi: 10.3969/j.issn.1006-6535.2021.06.019 XI Yan, LI Fangyuan, WANG Song, et al. Study on prevention of micro-annulus in cement sheath by prestressed cementing method[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 144–150. doi: 10.3969/j.issn.1006-6535.2021.06.019
[37] 谢关宝,滕春鸣,柳华杰. 盐岩蠕变对水泥环气密封完整性影响规律研究[J]. 石油钻探技术,2022,50(2):78–84. doi: 10.11911/syztjs.2021113 XIE Guanbao, TENG Chunming, LIU Huajie. Study on the influence of salt rock creep on the integrity of cement sheath gas seals[J]. Petroleum Drilling Techniques, 2022, 50(2): 78–84. doi: 10.11911/syztjs.2021113
[38] 丁士东,刘奎,刘小刚,等. 环空加压固井对双层套管水泥环界面径向应力的影响[J]. 石油钻探技术,2022,50(1):30–37. doi: 10.11911/syztjs.2021052 DING Shidong, LIU Kui, LIU Xiaogang, et al. The effect of pre-applied annulus back pressure cementing on radial stress of interfaces in double layer casing systems[J]. Petroleum Drilling Techniques, 2022, 50(1): 30–37. doi: 10.11911/syztjs.2021052
[39] SZELĄG M. Evaluation of cracking patterns of cement paste containing polypropylene fibers[J]. Composite Structures, 2019, 220: 402–411. doi: 10.1016/j.compstruct.2019.04.038
[40] KRUSZEWSKI M, MONTEGROSSI G, RAMÍREZ MONTES M, et al. A wellbore cement sheath damage prediction model with the integration of acoustic wellbore measurements[J]. Geothermics, 2019, 80: 195–207. doi: 10.1016/j.geothermics.2019.03.007
-
期刊类型引用(4)
1. 张东清,万云强,张文平,代永波,张金成,许明标. 涪陵页岩气田立体开发优快钻井技术. 石油钻探技术. 2023(02): 16-21 . 本站查看
2. 刘慧,丁心鲁,张士杰,方云贵,郝晓波,郑玮鸽. 地下储气库注气过程一体化压力及地层参数计算方法. 石油钻探技术. 2022(06): 64-71 . 本站查看
3. 周志敏,杨刚,崔建航. 顺北1区SHB5-12井周断溶体储层压裂参数设计研究. 水利与建筑工程学报. 2022(05): 109-116+130 . 百度学术
4. 张红杰,刘欣佳,张潇,张遂安,邵冰冰. 煤系储层综合开发中的压裂射孔方案优化研究. 特种油气藏. 2021(01): 154-160 . 百度学术
其他类型引用(2)