Processing math: 90%

页岩气小井眼水平井纳米增韧水泥浆固井技术

王涛, 申峰, 展转盈, 窦倩, 郭庆

王涛,申峰,展转盈,等. 页岩气小井眼水平井纳米增韧水泥浆固井技术[J]. 石油钻探技术,2023, 51(3):51-57. DOI: 10.11911/syztjs.2023059
引用本文: 王涛,申峰,展转盈,等. 页岩气小井眼水平井纳米增韧水泥浆固井技术[J]. 石油钻探技术,2023, 51(3):51-57. DOI: 10.11911/syztjs.2023059
WANG Tao, SHEN Feng, ZHAN Zhuanying, et al. Ductile nano-cement slurry cementing for slim-hole horizontal shale gas wells [J]. Petroleum Drilling Techniques,2023, 51(3):51-57. DOI: 10.11911/syztjs.2023059
Citation: WANG Tao, SHEN Feng, ZHAN Zhuanying, et al. Ductile nano-cement slurry cementing for slim-hole horizontal shale gas wells [J]. Petroleum Drilling Techniques,2023, 51(3):51-57. DOI: 10.11911/syztjs.2023059

页岩气小井眼水平井纳米增韧水泥浆固井技术

基金项目: 陕西省自然科学基础研究计划项目“改性碳纳米管开发功能性油井水泥浆研究”(编号:2022KJXX-31)、“纳–微CO2泡沫体系的构筑及其在纳–微多孔介质中的运移机制”(编号:2022JM-299)部分研究内容
详细信息
    作者简介:

    王涛(1986—),男,山西闻喜人,2010年毕业于中国石油大学(北京)石油工程专业,2013年获西南石油大学油气井工程专业硕士学位,高级工程师,主要从事固井水泥浆技术的研究和应用工作。E-mail:wt861104@126.com

  • 中图分类号: TE256+.7

Ductile Nano-Cement Slurry Cementing for Slim-Hole Horizontal Shale Gas Wells

  • 摘要:

    为了提高页岩气小井眼水平井固井质量,保证水泥环压裂封隔效果及压裂后的完整性,研究了纳米增韧水泥浆及其配套技术。采用纤维复配碳纳米管,研制了纳米增韧水泥浆,其形成的水泥石具有低模量、高抗拉的特点。与常规水泥石相比,纳米增韧水泥石的弹性模量降低50.9%,抗压强度提高28.1%,抗拉强度最高可达5.2 MPa。同时,研究了配套的碳纳米管三级混配工艺,解决了大剂量纳米材料易缠绕、难分散的问题,首次实现了碳纳米管水泥浆的现场应用。纳米增韧水泥浆固井试验结果表明,水平段固井质量合格率达98%;采用微地震井中监测技术评价了纳米增韧水泥环封隔效果,压裂过程中设计外区域的微地震事件为0,表明纳米增韧水泥环封隔良好。研究表明,纳米增韧水泥浆可为页岩气高效低成本开发提供技术支撑。

    Abstract:

    To improve the cementing quality of slim-hole horizontal shale gas wells and ensure the sealing effect of the cement sheath while fracturing and the integrity after fracturing, a ductile nano-cement slurry (DNCS) and its associated technologies were studied. The DNCS was developed by using carbon nanotubes compounded with fibers, which had the properties of low elastic modulus and high tensile strength. Compared with conventional cement, the elastic modulus of ductile nano-cement was reduced by 50.9%; the compressive strength was increased by 28.1%; the maximum tensile strength could reach 5.2 MPa. An associated carbon nanotube three-stage mixing technology was studied, which solved the problems of entanglement and difficult dispersion of large doses of nanomaterials, and the field application of carbon nanotube cement slurry was achieved for the first time. The results of the DNCS cementing test show that the qualified ratio of cementing quality in the horizontal section reaches 98%. The sealing effect of the cement sheath was evaluated by borehole microseismic monitoring technology, and the microseismic event in the off-design area during the fracturing process is 0, indicating that the cement sheath is well sealed. The DNCS provides a technical support for the efficient and low-cost development of shale gas.

  • 井眼轨迹挠曲特性的表征是研究井眼轨迹设计、监测及控制等技术方法的科学基础,只有掌握了井眼轨迹的挠曲特性及其表征方法,才能更好地实现导向钻井的预期目标。导向钻井需要先设计好井眼轨道,然后再确定工具造斜率和工具面角等技术参数,进而形成钻井技术方案[12]。显然,要基于井眼轨迹的挠曲形态来确定导向钻具的定向造斜参数,就必须建立两者间的相互关系。习惯做法是基于井眼轨迹计算出工具面角,基于井眼曲率来确定导向钻具的造斜率并留出余量。

    目前,通过研究导向钻具与井眼轨迹之间的相互作用,揭示了习惯做法的理论依据[3]:导向钻具的造斜率决定了井眼轨迹的井眼曲率,导向钻具的定向方向决定了井眼轨迹的主法线方向;提出了普适性的工具面角方程,解决了原有工具面角公式仅适用于空间圆弧模型的问题。然而,这些研究结果仍有局限性,即没有考虑地层自然造斜对井眼轨迹的影响。换句话说,基于井眼轨迹的挠曲形态来确定导向钻具的定向造斜参数,现有方法还仅局限于不考虑地层自然造斜影响的情况。

    针对上述遗留问题,笔者提出了井眼轨迹主法线角的概念,建立了主法线角的通用方程,创建了用特性曲线表征井眼轨迹挠曲形态的方法,以期厘清现有理论与技术中的一些模糊认识。

    井眼轨迹是连续光滑的空间曲线,既有弯曲又有扭转。为表征井眼轨迹的挠曲形态,需要定义井眼轨迹的基本向量,即单位切线向量t、单位主法线向量n和单位副法线向量b。单位切线向量t指向井眼轨迹的前进方向,单位主法线向量n指向井眼轨迹的弯曲方向,单位副法线向量b垂直于单位切线向量t和单位主法线向量n(即b=t×n),如图1所示。

    图  1  井眼轨迹的基本向量和主法线角
    Figure  1.  Basic vector and principal normal angle of borehole trajectory

    根据数学原理和钻井工程定义,在井口坐标系ONEH下,井眼轨迹的基本向量可表述为[24]

    {t=isinαcosϕ+jsinαsinϕ+kcosαn=1κi(καcosαcosϕκϕsinαsinϕ)+1κj(καcosαsinϕ+κϕsinαcosϕ)1κκαksinαb=1κi(καsinϕ+κϕsinαcosαcosϕ)+1κj(καcosϕκϕsinαcosαsinϕ)+1κκϕksin2α (1)

    式中:α为井斜角,(°);ϕ为方位角,(°);κα为井斜变化率,(°)/m;κϕ为方位变化率,(°)/m;κ为井眼曲率,(°)/m;ijk分别为井口坐标系N轴、E轴、H轴上的单位坐标向量。

    井眼轨迹的弯曲特性可用井眼曲率κ和单位主法线向量n表征,其中井眼曲率用于表征井眼轨迹的弯曲程度,单位主法线向量用于表征井眼轨迹的弯曲方向。虽然式(1)能表征单位主法线向量n,但是不够直观,也不便于应用。考虑到单位主法线向量n和井眼高边都位于井眼轨迹的法平面内,所以基于井眼高边方向来表征单位主法线向量n更为简洁方便。若井眼高边向量用h表示,则在井口坐标系ONEH下可表示为[23]

    h=icosαcosϕ+jcosαsinϕksinα (2)

    为基于井眼高边来表征主法线方向,将单位主法线向量n与井眼高边向量h之间的夹角定义为主法线角ωω是单位切线向量t自井眼高边向量h方向顺时针转至主法线向量n方向所形成的角度。

    导向钻具的定向造斜特性用工具造斜率κt和工具面角ωt表征,其中工具造斜率用于表征导向钻具的造斜能力,工具面角用于表征导向钻具的工作姿态并确定定向方向nt[3],如图2所示。在井底点P处,向量t指示了井眼轨迹的切线方向,垂直于向量t的平面称为井底平面。过向量t的铅垂平面称为井斜平面,导向钻具所在或所指示的平面称为工具面。在井底平面与工具面的交线上,从井眼中心P点指向钻头的方向称为定向方向,用单位向量nt表示。显然,井眼高边向量h位于井底平面与井斜平面的交线上,且指向增井斜方向。

    图  2  导向钻具的定向方向和工具面角
    Figure  2.  Orientation direction and tool face angle of steering tool

    工具面角ωt是指绕井眼切线向量t自井斜平面顺时针转至工具面所形成的角度[12]。显然,工具面角ωt是工具面与井斜平面之间的夹角,也是定向向量nt与井眼高边向量h之间的夹角[3],且具有方向性。

    此前,业内没有主法线角概念而用工具面角代替,还认为井眼轨迹的井眼曲率与导向钻具的造斜率相等。于是,在工程上形成了一些习惯做法,例如基于井眼曲率κ来估算工具造斜率κt、基于工具面角ωt建立井眼轨迹的恒工具面模型[56],等等。事实上,井眼曲率和主法线角属于井眼轨迹的挠曲参数,工具造斜率和工具面角是导向钻具的定向造斜参数,两者的研究对象和参数意义存在本质性区别。显然,井眼轨迹模型应基于井眼轨迹的挠曲参数来定义,不应基于导向钻具的定向造斜参数进行定义,所以恒工具面模型应改称为恒主法线(角)模型。业内长期混用这2组参数的主要原因是:当不考虑地层自然造斜对井眼轨迹的影响时,井眼曲率和主法线角(κω)与工具造斜率和工具面角(κtωt)在数值上分别相等。因此,以往的相关研究结果都只适用于不考虑地层自然造斜影响的情况,此后应厘清这2组参数。

    根据井眼轨迹主法线角和向量间夹角的定义可知:

    {cosω=nh|n||h|sinω=|n×h||n||h| (3)

    将式(1)和式(2)代入式(3),由于|n|=|h|=1,经整理得:

    {cosω=κακsinω=κϕκsinα (4)

    于是,有:

    {κα=κcosωκϕ=κsinωsinα (5)

    {κ=κα2+κϕ2sin2αtanω=κϕκαsinα (6)

    这样,便得到了井眼轨迹的井眼曲率和主法线角(κω)与井斜变化率和方位变化率(κακϕ)之间的关系式。在上述定义及公式推演过程中,由于没有限定具体的井眼轨迹模型,所以这些公式都具有普适性。

    对于具体的井眼轨迹模型,需要求得井斜角α、井斜变化率κα和方位变化率κϕ,才能用式(6)计算井眼轨迹的主法线角ω。显然,井眼轨迹模型不同,这些参数的计算方法也不同。将任一井眼轨迹模型的井斜角(α)方程、井斜变化率(κα)方程和方位变化率(κϕ)方程代入式(6),都可得到相应模型的主法线角ω的计算公式。

    对于空间圆弧模型,假设井眼轨迹为空间斜平面内的圆弧线,井眼曲率κ为常数,其特征参数是井眼曲率κ和井段始点A处的主法线角ωA[2]

    cosα=cosαAcosεsinαAcosωAsinε (7)
    κα=κsinα(cosαAsinε+sinαAcosωAcosε) (8)
    κϕ=κsinαAsinωAsin2α (9)
    tanω=sinαAsinωAcosαAsinε+sinαAcosωAcosε (10)
    其中ε=κ(LLA) (11)

    式中:αAA点的井斜角,(°);L为井深,m;LAA点的井深,m;ε为弯曲角,(°)。

    对于圆柱螺线模型,假设井眼轨迹为等变螺旋角的圆柱螺线,其垂直剖面和水平投影均为圆弧,特征参数是垂直剖面和水平投影的曲率κvκh[2]

    α=αA+κv(LLA) (12)
    κα=κv (13)
    κϕ=κhsinα (14)
    tanω=κhκvsin2[αA+κv(LLA)] (15)

    式中:κv为井眼轨迹垂直剖面的曲率,(°)/m;κh为井眼轨迹水平投影的曲率,(°)/m。

    对于自然曲线模型,假设井眼轨迹的井斜变化率κα和方位变化率κϕ都为常数,其特征参数是井斜变化率κα和方位变化率κϕ[2]

    α=αA+κα(LLA) (16)
    tanω=κϕκαsin[αA+κα(LLA)] (17)

    由于井眼曲率κ恒为正值,且在井斜角值域内sin α≥0,所以由式(5)可知,井斜变化率κα和方位变化率κϕ的正负号取决于主法线角ω的数值,即:

    {κα>00 (18)
    \left\{ \begin{array}{l} {\kappa _\phi }> 0 \quad 0^\circ < \omega < 180^\circ \\ {\kappa _\phi }= 0\quad \quad \omega {\rm{ = }}0^\circ , \omega {\rm{ = 18}}0^\circ \\ {\kappa _\phi }< 0\quad \quad 180^\circ < \omega < 360^\circ \end{array} \right. (19)

    还可根据式(18)和式(19),用图示法来表征主法线角ω对井斜角α和方位角ϕ的影响规律(见图3)。

    图  3  主法线角对井斜的影响规律
    Figure  3.  Influence rules of principal normal angle on hole inclination

    为表征井眼轨迹的挠曲形态,现已定义了很多挠曲参数,常用的挠曲参数及分组有:井斜变化率和方位变化率(κακϕ)、井眼曲率和主法线角(κω)。显然,井眼轨迹的挠曲参数都沿井深变化,要形象直观地表征这些挠曲参数的变化规律,就需要构建井眼轨迹的挠曲特性曲线。

    由式(6)可知,井眼曲率κ和主法线角ω均为κακϕsin α的函数。若以κϕsin α为横轴、以κα为纵轴建立直角坐标系,则井眼曲率κ和主法线角ω分别为极坐标系的极径和极角,如图4所示。据此,将井眼轨迹上各点处的井眼曲率κ和主法线角ω都绘制在这张图上,便可得到随井深变化的κω曲线。若将设计轨道和实钻轨迹的井眼曲率和主法线角绘制在同一张图上,便可随钻监测两者的变化规律及两者的符合情况。

    图  4  井眼轨迹的挠曲特性曲线
    Figure  4.  Deflection characteristic curve of borehole trajectory

    需要说明的是,图4内涵丰富,它不仅基于极坐标系表征了κω曲线,也基于直角坐标系表征了κακϕsin α曲线,而且还表征了井眼曲率和主法线角(κω)与井斜变化率和方位变化率(κακϕ)之间的相互关系。

    1)提出了井眼轨迹主法线角的概念及定义,明确了井眼轨迹挠曲特性(井眼曲率和主法线角)与导向钻具定向造斜特性(工具造斜率和工具面角)之间的区别。只有不考虑地层自然造斜对井眼轨迹的影响时,两者才相等。

    2)揭示了井眼轨迹不同挠曲参数间的关系,建立了井眼轨迹的主法线角方程,并给出了常用井眼轨迹模型的主法线角计算公式。

    3)建立了用特性曲线表征井眼轨迹挠曲形态的方法,基于直角坐标系和极坐标系耦合的特性曲线可表征多组挠曲参数及其之间的关系,可用于随钻监测井眼轨迹的挠曲特性及其变化情况。

  • 图  1   不同水泥石内部结构示意

    Figure  1.   Internal structure of different cement stones

    图  2   不同配方水泥石的应力–应变曲线

    Figure  2.   Stress-strain curves of cement stone with different formulations

    图  3   不同配方水泥石的抗压强度和抗拉强度测试结果

    Figure  3.   Compressive strength and tensile strength of cement in different cement slurries

    图  4   不同配方水泥石的孔径分布

    Figure  4.   Pore size distribution of cement stone with different formulations

    图  5   YYP-10井压裂各段微地震事件监测结果

    Figure  5.   Monitoring results of microseismic events in each fracturing section of Well YYP-10

    表  1   不同配方水泥浆关键材料的加量

    Table  1   Dosage of key materials for different formulations of cement slurry

    配方纤维加量,%CNTs加量,%降滤失剂
    加量,%
    油井水泥分散剂
    加量,%
    A0000.400.30
    A10.5000.400.32
    A20.500.020.400.35
    A30.500.040.400.40
    A40.500.060.400.45
    A51.0000.400.32
    A61.000.020.400.35
    A71.000.040.400.40
    A81.000.060.400.45
    下载: 导出CSV

    表  2   水泥浆综合性能测试结果

    Table  2   Comprehensive performance test results of cement slurries

    水泥浆配方滤失量/mL游离液含量,%上下层密度差/(kg·L−1稠度系数流性指数/( Pa·sn稠化时间/min
    A05200.0020.790.27134
    A842000.890.20131
    下载: 导出CSV
  • [1] 朱维耀,陈震,宋智勇,等. 中国页岩气开发理论与技术研究进展[J]. 工程科学学报,2021,43(10):1397–1412.

    ZHU Weiyao, CHEN Zhen, SONG Zhiyong, et al. Research progress in theories and technologies of shale gas development in China[J]. Chinese Journal of Engineering, 2021, 43(10): 1397–1412.

    [2] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1–14. doi: 10.3787/j.issn.1000-0976.2021.01.001

    ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1–14. doi: 10.3787/j.issn.1000-0976.2021.01.001

    [3] 贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152.

    JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152.

    [4] 张金川,史淼,王东升,等. 中国页岩气勘探领域和发展方向[J]. 天然气工业,2021,41(8):69–80. doi: 10.3787/j.issn.1000-0976.2021.08.007

    ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69–80. doi: 10.3787/j.issn.1000-0976.2021.08.007

    [5] 周安富,谢伟,邱峋晰,等. 泸州区块龙一14小层页岩气勘探开发潜力[J]. 特种油气藏,2022,29(6):20–28.

    ZHOU Anfu, XIE Wei, QIU Xunxi, et al. On exploration and development potential of shale gas in Longyi14 sub-bed in Luzhou Block[J]. Special Oil & Gas Reserviors, 2022, 29(6): 20–28.

    [6] 杜燕,刘超,高潮,等. 鄂尔多斯盆地延长探区陆相页岩气勘探开发进展、挑战与展望[J]. 中国石油勘探,2020,25(2):33–42. doi: 10.3969/j.issn.1672-7703.2020.02.004

    DU Yan, LIU Chao, GAO Chao, et al. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(2): 33–42. doi: 10.3969/j.issn.1672-7703.2020.02.004

    [7] 李治衡,李进,张磊,等. 渤海油田小间隙环空固井技术及应用[J]. 非常规油气,2019,6(1):94–100. doi: 10.3969/j.issn.2095-8471.2019.01.016

    LI Zhiheng, LI Jin, ZHANG Lei, et al. Study and application of small clearance cementing technique in Bohai Oilfield[J]. Unconventional Oil & Gas, 2019, 6(1): 94–100. doi: 10.3969/j.issn.2095-8471.2019.01.016

    [8] 赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012

    ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012

    [9] 张驰,周彤,肖佳林,等. 涪陵页岩气田加密井压裂技术的实践与认识[J]. 断块油气田,2022,29(6):775–779.

    ZHANG Chi, ZHOU Tong, XIAO Jialin, et al. Practice and knowledge of fracturing technology for infill wells in Fuling Shale Gas Field[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 775–779.

    [10] 何吉标,彭小平,刘俊君,等. 抗高交变载荷水泥浆的研制及其在涪陵页岩气井的应用[J]. 石油钻探技术,2020,48(3):35–40. doi: 10.11911/syztjs.2020054

    HE Jibiao, PENG Xiaoping, LIU Junjun, et al. Development of an anti-deformation cement slurry under alternative loading and its application in Fuling shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 35–40. doi: 10.11911/syztjs.2020054

    [11] 苏东华,黄盛,李早元,等. 页岩油水平井压裂水泥环力学性能设计方法[J]. 石油勘探与开发,2022,49(4):798–805. doi: 10.11698/PED.20220019

    SU Donghua, HUANG Sheng, LI Zaoyuan, et al. Mechanical property design method of cement sheath in a horizontal shale oil well under fracturing conditions[J]. Petroleum Exploration and Development, 2022, 49(4): 798–805. doi: 10.11698/PED.20220019

    [12] 李子丰,张永贵,阳鑫军. 蠕变地层与油井套管相互作用力学模型[J]. 石油学报,2009,30(1):129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026

    LI Zifeng, ZHANG Yonggui, YANG Xinjun. Mechanics model for interaction between creep formation and oil well casing[J]. Acta Petrolei Sinica, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026

    [13] 李成嵩,李社坤,范明涛,等. 水平井压裂过程中固井界面裂缝的扩展规律[J]. 钻井液与完井液,2022,39(6):761–766.

    LI Chengsong, LI Shekun, FAN Mingtao, et al. Rule of propagation of fractures through the bonding interfaces of cement sheath in horizontal well fracturing[J]. Drilling Fluid & Completion Fluid, 2022, 39(6): 761–766.

    [14] 王涛,申峰,展转盈,等. 高强微弹水泥浆在延长油田致密油水平井中的应用[J]. 石油钻探技术,2019,47(5):40–48.

    WANG Tao, SHEN Feng, ZHAN Zhuaiying, et al. The application of high-strength micro-elastic cement slurry in the tight oil horizontal wells of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 40–48.

    [15] 张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. doi: 10.11911/syztjs.2022097

    ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21. doi: 10.11911/syztjs.2022097

    [16] 李士斌,官兵,张立刚,等. 水平井压裂裂缝局部应力场扰动规律[J]. 油气地质与采收率,2016,23(6):112–119. doi: 10.3969/j.issn.1009-9603.2016.06.019

    LI Shibin, GUAN Bing, ZHANG Ligang, et al. Local stress field disturbance law of horizontal well fracturing[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(6): 112–119. doi: 10.3969/j.issn.1009-9603.2016.06.019

    [17] 范明涛,李军,柳贡慧. 页岩地层体积压裂过程中水泥环完整性研究[J]. 石油机械,2017,45(8):45–49. doi: 10.16082/j.cnki.issn.1001-4578.2017.08.010

    FAN Mingtao, LI Jun, LIU Gonghui. Study on cement sheath integrity in shale formation fracturing process[J]. China Petroleum Machinery, 2017, 45(8): 45–49. doi: 10.16082/j.cnki.issn.1001-4578.2017.08.010

    [18] 何立成. 胜利油田沙河街组页岩油水平井固井技术[J]. 石油钻探技术,2022,50(2):45–50. doi: 10.11911/syztjs.2022062

    HE Licheng. A cementing technology for horizontal shale oil wells in Shahejie Formation of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 45–50. doi: 10.11911/syztjs.2022062

    [19] 张成金,冷永红,李美平,等. 聚丙烯纤维水泥浆体系防漏增韧性能研究与应用[J]. 天然气工业,2008,28(1):91–93. doi: 10.3787/j.issn.1000-0976.2008.01.025

    ZHANG Chengjin, LENG Yonghong, LI Meiping, et al. Property studies and application of leak protection and flexibility of mekralon mud[J]. Natural Gas Industry, 2008, 28(1): 91–93. doi: 10.3787/j.issn.1000-0976.2008.01.025

    [20] 郝华中,桑明,张晔,等. 耐碱玻璃纤维增韧水泥石力学性能及对水泥浆性能影响[J]. 钻采工艺,2020,43(5):134–138. doi: 10.3969/J.ISSN.1006-768X.2020.05.38

    HAO Huazhong, SANG Ming, ZHANG Ye, et al. Mechanical properties of alkali-resistant glass fiber toughened cement and its influence on cement slurry properties[J]. Drilling & Production Technology, 2020, 43(5): 134–138. doi: 10.3969/J.ISSN.1006-768X.2020.05.38

    [21] 李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液, 2021, 38(5): 623-627.

    LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 623-627.

    [22] 刘慧婷,刘硕琼,冯宇思,等. 碳纳米管的掺入对油井水泥浆性能的影响[J]. 硅酸盐通报,2015,34(2):456–460. doi: 10.16552/j.cnki.issn1001-1625.2015.02.032

    LIU Huiting, LIU Shuoqiong, FENG Yusi, et al. Impact of carbon nanotube addition on properties of cement paste[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 456–460. doi: 10.16552/j.cnki.issn1001-1625.2015.02.032

    [23] 冯宇思,刘硕琼,刘慧婷,等. 碳纳米管改性水泥石力学性能研究[J]. 钻井液与完井液,2018,35(6):93–97. doi: 10.3969/j.issn.1001-5620.2018.06.017

    FENG Yusi, LIU Shuoqiong, LIU Huiting, et al. Study on mechanical performance of set cement modified with CNT[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 93–97. doi: 10.3969/j.issn.1001-5620.2018.06.017

    [24] 陈立超, 张典坤, 吕帅锋. 碳纳米管复合固井水泥动静态断裂性能试验研究[J]. 材料导报, 2022, 36(增刊2): 148−153.

    CHEN Lichao, ZHANG Diankun, LYU Shuaifeng. Experimental study on dynamic and static fracture performance of carbon nanotubes cement[J]. Materials Reports, 2022, 36(supplement 2): 148−153.

    [25] 武玺旺,肖建中,夏风,等. 碳纳米管的分散方法与分散机理[J]. 材料导报,2011,25(9):16–19.

    WU Xiwang, XIAO Jianzhong, XIA Feng, et al. Dispersion methods and dispersion mechanism of carbon nanotubes[J]. Materials Review, 2011, 25(9): 16–19.

    [26] 王涛,窦倩,贾红军. 酰胺改性碳纳米管对固井水泥浆性能的影响[J]. 钻井液与完井液,2020,37(1):103–109.

    WANG Tao, DOU Qian, JIA Hongjun. Effects of amide-modified CNTs on properties of cement slurry[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 103–109.

    [27] 郭小阳, 李早元, 辜涛, 等. 复杂油气藏固井液技术研究与应用[M]. 北京: 科学出版社, 2017: 192 − 199.

    GUO Xiaoyang, LI Zaoyuan, GU Tao, et al. Research and application of cementing fluid technology in complex oil and gas reservoirs[M]. Beijing: Science Press, 2017: 192 − 199.

    [28] 步玉环,穆海朋,王瑞和,等. 复杂应力环境下纤维水泥阻裂机理实验研究[J]. 石油学报,2008,29(6):922–926. doi: 10.3321/j.issn:0253-2697.2008.06.026

    BU Yuhuan, MU Haipeng, WANG Ruihe, et al. Crack resistance mechanism of fiber cement under the action of complex stress[J]. Acta Petrolei Sinica, 2008, 29(6): 922–926. doi: 10.3321/j.issn:0253-2697.2008.06.026

    [29]

    LIU Huiting, JIN Jianzhou, YU Yongjin, et al. Influence of halloysite nanotube on hydration products and mechanical properties of oil well cement slurries with nano-silica[J]. Construction and Building Materials, 2020, 247: 118545. doi: 10.1016/j.conbuildmat.2020.118545

    [30] 张楠楠,李云龙,刘锦红,等. 玄武岩粉对海工胶凝材料性能及水化的影响[J]. 硅酸盐通报,2020,39(7):2204–2210. doi: 10.16552/j.cnki.issn1001-1625.20200311.001

    ZHANG Nannan, LI Yunlong, LIU Jinhong, et al. Effect of the addition of basalt powder on properties and hydration of marine cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2204–2210. doi: 10.16552/j.cnki.issn1001-1625.20200311.001

    [31] 牛荻涛,何嘉琦,傅强,等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报,2020,48(5):705–717. doi: 10.14062/j.issn.0454-5648.2020.05.20190638

    NIU Ditao, HE Jiaqi, FU Qiang, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 705–717. doi: 10.14062/j.issn.0454-5648.2020.05.20190638

    [32] 窦倩,王涛,张书勤,等. 碳纳米管固井水泥复合材料抗腐蚀及力学性能研究[J]. 硅酸盐通报,2019,38(11):3703–3711. doi: 10.16552/j.cnki.issn1001-1625.2019.11.050

    DOU Qian, WANG Tao, ZHANG Shuqin, et al. Research on corrosion resistance and mechanical properties of carbon nanotubes reinforced cement-based composites[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3703–3711. doi: 10.16552/j.cnki.issn1001-1625.2019.11.050

    [33]

    EL-GAMAL S M A, HASHEM F S, AMIN M S. Influence of carbon nanotubes, nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature[J]. Construction and Building Materials, 2017, 146: 531–546. doi: 10.1016/j.conbuildmat.2017.04.124

    [34] 马振锋,于小龙,杨全枝,等. 陆相页岩气水平井钻井提速技术[J]. 非常规油气,2017,4(4):88–92. doi: 10.3969/j.issn.2095-8471.2017.04.014

    MA Zhenfeng, YU Xiaolong, YANG Quanzhi, et al. The technology of improving rate of penetration in continental shale gas horizontal well[J]. Unconventional Oil & Gas, 2017, 4(4): 88–92. doi: 10.3969/j.issn.2095-8471.2017.04.014

    [35] 匡立新,陶谦. 渝东地区常压页岩气水平井充氮泡沫水泥浆固井技术[J]. 石油钻探技术,2022,50(3):39–45.

    KUANG Lixin, TAO Qian. Cementing technology using a nitrogen-filled foamed cement slurry for horizontal shale gas wells in the eastern Chongqing area[J]. Petroleum Drilling Techniques, 2022, 50(3): 39–45.

    [36] 席岩,李方园,王松,等. 利用预应力固井方法预防水泥环微环隙研究[J]. 特种油气藏,2021,28(6):144–150. doi: 10.3969/j.issn.1006-6535.2021.06.019

    XI Yan, LI Fangyuan, WANG Song, et al. Study on prevention of micro-annulus in cement sheath by prestressed cementing method[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 144–150. doi: 10.3969/j.issn.1006-6535.2021.06.019

    [37] 谢关宝,滕春鸣,柳华杰. 盐岩蠕变对水泥环气密封完整性影响规律研究[J]. 石油钻探技术,2022,50(2):78–84. doi: 10.11911/syztjs.2021113

    XIE Guanbao, TENG Chunming, LIU Huajie. Study on the influence of salt rock creep on the integrity of cement sheath gas seals[J]. Petroleum Drilling Techniques, 2022, 50(2): 78–84. doi: 10.11911/syztjs.2021113

    [38] 丁士东,刘奎,刘小刚,等. 环空加压固井对双层套管水泥环界面径向应力的影响[J]. 石油钻探技术,2022,50(1):30–37. doi: 10.11911/syztjs.2021052

    DING Shidong, LIU Kui, LIU Xiaogang, et al. The effect of pre-applied annulus back pressure cementing on radial stress of interfaces in double layer casing systems[J]. Petroleum Drilling Techniques, 2022, 50(1): 30–37. doi: 10.11911/syztjs.2021052

    [39]

    SZELĄG M. Evaluation of cracking patterns of cement paste containing polypropylene fibers[J]. Composite Structures, 2019, 220: 402–411. doi: 10.1016/j.compstruct.2019.04.038

    [40]

    KRUSZEWSKI M, MONTEGROSSI G, RAMÍREZ MONTES M, et al. A wellbore cement sheath damage prediction model with the integration of acoustic wellbore measurements[J]. Geothermics, 2019, 80: 195–207. doi: 10.1016/j.geothermics.2019.03.007

  • 期刊类型引用(2)

    1. 郑渊云,鲜明,邹祥富,杨若愚,龙远盛,黄凯然. 三维井筒套管柱居中度设计——以川渝油气田为例. 石油地质与工程. 2024(03): 102-107+112 . 百度学术
    2. 林昕,苑仁国,韩雪银,陈玉山,于忠涛,刘素周. 地质导向钻井轨迹控制技术研究. 钻采工艺. 2021(02): 5-8 . 百度学术

    其他类型引用(2)

图(5)  /  表(2)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  77
  • PDF下载量:  77
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-08-17
  • 修回日期:  2023-05-22
  • 网络出版日期:  2023-05-28
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回