Processing math: 40%

结合钻井工况与Bi-GRU的溢流与井漏监测方法

孙伟峰, 刘凯, 张德志, 李威桦, 徐黎明, 戴永寿

孙伟峰,刘凯,张德志,等. 结合钻井工况与Bi-GRU的溢流与井漏监测方法[J]. 石油钻探技术,2023, 51(3):37-44. DOI: 10.11911/syztjs.2023043
引用本文: 孙伟峰,刘凯,张德志,等. 结合钻井工况与Bi-GRU的溢流与井漏监测方法[J]. 石油钻探技术,2023, 51(3):37-44. DOI: 10.11911/syztjs.2023043
SUN Weifeng, LIU Kai, ZHANG Dezhi, et al. A kick and lost circulation monitoring method combining Bi-GRU and drilling conditions [J]. Petroleum Drilling Techniques,2023, 51(3):37-44. DOI: 10.11911/syztjs.2023043
Citation: SUN Weifeng, LIU Kai, ZHANG Dezhi, et al. A kick and lost circulation monitoring method combining Bi-GRU and drilling conditions [J]. Petroleum Drilling Techniques,2023, 51(3):37-44. DOI: 10.11911/syztjs.2023043

结合钻井工况与Bi-GRU的溢流与井漏监测方法

基金项目: 国家自然科学基金项目“基于深度学习的深地叠前时空域地震子波提取方法研究”(编号:42274159)资助
详细信息
    作者简介:

    孙伟峰(1982—),男,山东东营人,2005年毕业于山东大学通信工程专业,2010年获山东大学信号与信息处理专业博士学位,教授,博士生导师,主要从事钻井风险智能预警方面的研究工作。E-mail: sunwf@upc.edu.cn

  • 中图分类号: TE28

A Kick and Lost Circulation Monitoring Method Combining Bi-GRU and Drilling Conditions

  • 摘要:

    现有根据钻井液池体积和钻井液出口流量变化监测溢流与井漏的方法,未考虑开、停泵工况对出口流量和钻井液池体积变化的影响,易导致误报。为了降低误报率,分析了钻井工况与钻井液池体积和钻井液出口流量之间的相关关系,提出了一种结合钻井工况与双向门控循环单元(bidirectional-gated recurrent unit, Bi-GRU)的溢流与井漏智能监测方法。利用23口井的溢流与井漏监测数据,对提出的模型与现有典型模型分别进行了测试,结果表明:基于Bi-GRU的溢流与井漏智能监测模型的识别准确率为94.25%,优于其他模型;与未考虑钻井工况的Bi-GRU模型相比,误报率由12.52%降至1.12%。研究表明,该方法能够消除溢流与井漏监测时因开、停泵导致的风险误报,能为安全钻井提供技术支持。

    Abstract:

    The existing kick and lost circulation monitoring methods using pot volume and outlet flow of drilling fluids do not consider the influence of the pump on and off on the outlet flow, and pot volume of drilling fluids. So it can easily lead to false alarm. In order to address this problem, the correlation of drilling conditions with pot volume and outlet flow of drilling fluids was established, and an intelligent kick and lost circulation monitoring method combining a bidirectional-gated recurrent unit (Bi-GRU) and drilling conditions was proposed. The proposed model and other representative models for kick and lost circulation monitoring were tested by using the data collected from 23 wells. The experimental results show that the identification accuracy of the proposed model achieves 94.25%, which is superior to those of the other models. Compared with that of the Bi-GRU model without considering the drilling conditions, the false alarm rate of the proposed model drops from 12.52% to 1.12%. The proposed method reduces the false alarms caused by pump on and off states during kick and lost circulation monitoring, and these findings can provide technical support for safe drilling.

  • 溢流和井漏是钻井过程中的2种常见且易发的风险,及时、准确地识别溢流和井漏风险,并采取必要的井控措施是安全钻井的前提。误报是溢流和井漏风险监测中常见的问题[1],会影响正常的钻井作业,使钻井周期增长,钻井成本增加,限制了溢流和井漏监测方法的现场应用。

    发生溢流时,地层流体侵入井筒,出口流量和钻井液池液面会呈现上升趋势。发生井漏时,钻井液由井筒流入地层,导致出口流量和钻井液池液面降低。钻井液池液面监测法[2]和进出口流量差法[3]是钻井现场常用的溢流和井漏监测方法。该类方法简单有效、易于应用,但是,由于其未考虑钻井工况和监测参数之间的关联与约束关系且阈值难以准确设定,导致风险识别准确率低,误报率高[4]。为了降低溢流与井漏识别的误报率,M. Yi等人[5]利用自然语言处理方法识别钻井日志中的开、停泵事件,消除开泵、停泵对溢流与井漏识别的影响,有效地减少了风险误报的发生;但是,该方法计算复杂,无法实时实现,不便在现场应用。近年来,基于人工神经网络的监测方法受到越来越多的关注[6-10]。由于溢流与井漏监测所用参数都为时序数据,具有历史信息记忆能力的门控循环单元[11](gated recurrent unit, GRU)在溢流与井漏识别方面取得了良好的效果[12],但是,GRU网络只考虑了历史信息对当前信息的单向影响,未考虑未来信息与当前信息之间的关联[13],导致网络无法学习到全局信息,溢流与井漏识别的准确性有待提高。

    为了提高溢流与井漏识别的准确率,并降低其误报率,笔者分析了开、停泵工况对溢流与井漏识别的影响,并将双向门控循环单元(bidirectional gated recurrent unit, Bi-GRU)网络[14-17]应用于溢流与井漏监测,提出了结合钻井工况与Bi-GRU网络的溢流与井漏智能监测方法,并利用实测数据进行了风险识别,结果表明,提出的方法提高了风险识别的准确率,且误报率显著降低。

    溢流与井漏监测所用参数是多个时间序列数据,通过分析一段时间内监测参数的变化趋势实现风险识别。GRU网络[18]作为RNN的一种变体,适合处理时序数据,能够解决RNN的长期记忆失效和反向传播中的梯度消失、梯度爆炸等问题。GRU网络具有重置门和更新门2个门控单元,用来记忆历史信息并更新GRU的隐藏状态。与LSTM网络相比,GRU网络仅使用2个门控单元就能够实现对历史信息的记忆和遗忘。由于GRU网络的结构更简单,参数更少,因此训练效率更高,且不容易出现过拟合。GRU网络记忆单元的结构如图1所示。

    图  1  GRU网络记忆单元的结构
    Figure  1.  Structure of the GRU memory cell

    图1中,GRU网络记忆单元通过历史信息Ct1和当前时刻的输入xt获取2个门控状态。Ct是重置门rt和当前时刻输入xt共同作用的结果,包含了当前时刻的记忆信息,是一种短时记忆。GRU网络记忆单元通过更新门zt将历史信息Ct1与当前时刻的记忆信息Ct保留在隐状态Ct中并不断向后传递,是一种长时记忆。GRU网络记忆单元内部的信息传递过程可表示为:

    rt=σ(Wr[Ct1,xt]) (1)
    zt=σ(Wz[Ct1,xt]) (2)
    Ct=tanh(Wc[(rtCt1),xt]) (3)
    Ct=(1zt)Ct1+ztCt (4)

    式中:WrWzWc分别为重置门、更新门和候选状态的输入层权重;rt表示重置门;zt表示更新门;Ct表示当前时刻隐藏层的候选状态;Ct表示当前时刻隐含状态;xt为当前时刻输入。

    Bi-GRU网络由2个输入相同但信息传递方向相反的单向GRU网络组成,其网络结构如图2所示。因此,Bi-GRU网络不仅能够利用正向信息,还可以根据逆向时序数据反馈的信息对模型进行修正,能够更加充分地提取钻井数据中的趋势特征。

    图  2  Bi-GRU网络的结构
    Figure  2.  Structure of Bi-GRU network

    结合钻井工况与Bi-GRU的溢流与井漏监测方法由钻井工况判别模块和溢流与井漏智能监测模块2部分组成。钻井工况判别模块采用动态时间规整(dynamic time warping, DTW)法实现对开、停泵工况的识别。溢流与井漏监测模块以钻井工况、出口流量和钻井液池体积为输入构建Bi-GRU网络,综合考虑3个参数的变化,实现对溢流与井漏的智能监测。基于Bi-GRU的溢流与井漏监测方法的流程如图3所示。

    图  3  基于Bi-GRU的溢流与井漏监测方法的流程
    Figure  3.  Flow of kick and lost circulation monitoring method based on Bi-GRU

    钻井施工过程中,根据钻井液出口流量和钻井液池体积变化监测溢流和井漏风险时,若未考虑开泵、停泵对出口流量和钻井液池体积的影响,易引起误报。为消除由开、停泵工况引起的风险误报,在溢流与井漏监测前需要进行开、停泵工况的识别。注意到开、停泵会直接引起泵冲和出口流量的明显变化,因此利用泵冲和出口流量的相对变化趋势,提出了一种基于DTW[19]的开、停泵工况判别方法。该方法利用DTW可以比较不等长时间序列之间相似程度的优势,能够消除出口流量变化滞后带来的影响,提高工况判别的准确性。

    NY井在开泵和停泵时的泵冲、出口流量和钻井液池体积变化情况如图4所示。从图4可以看出,停泵时泵冲突然降低至0,钻井液循环中止导致出口流量也随之降为0;开泵后,泵冲和出口流量回升为正常值。钻井液池体积受回流效应的影响,会出现先升高后降低的变化趋势;相比于泵冲和出口流量,钻井液池体积的变化幅度较小。可见,泵冲和出口流量是受开、停泵影响最直接、变化最明显的参数,利用这2个参数可以判别开、停泵工况。

    图  4  开、停泵期间监测参数的变化
    Figure  4.  Monitoring parameter changes during pump on and off

    利用DTW算法进行工况判别的步骤如下:

    1)为避免泵冲和出口流量的取值范围及量纲差异对工况判别造成影响,应用DTW方法之前需要对泵冲和出口流量进行归一化处理。

    多次试验表明,当数据呈现不同的变化趋势时,适用的归一化方法也不同。因此,利用移动平均散度(divergence of moving average, DMA)[20]计算了趋势量化指标C,用于判断数据自身的变化趋势是否平稳,根据数据变化趋势的平稳性选择不同的归一化方法。趋势量化指标C的计算公式为:

    C=¯Mα,t¯Mβ,t (5)

    式中:¯Mα,t¯Mβ,t分别代表长度分别为αβ的滑动窗口在t时刻的移动平均值。

    C的绝对值越小,表示数据的变化趋势越平稳。

    分别选择时长为1和3 min的时窗量化出口流量的变化趋势[20],由于现场数据的采样间隔为5 s,因此αβ的取值分别为12和36。大量数据的统计分析表明,当|C|>1.4时,泵冲和出口流量本身具有非平稳变化的趋势,采用最大最小归一化方法对其进行处理:

    x=xmin (6)

    式中:{{X}}表示输入数据序列;\max {{X}}\min {{X}}分别表示取数据序列的最大值和最小值; x 表示原始值; {x'} 表示归一化后的值。

    |C| < 1.4时,泵冲和出口流量具有平稳的变化趋势,采用最大值归一化对其进行处理,以保留数据原本的变化趋势:

    {x'} = \frac{x}{{\max {\boldsymbol{X}}}} (7)

    2)给定归一化后长度为m的泵冲数据序列{\boldsymbol{A}} = \{ {a_1},{a_2},{a_3}, \ldots, {a_m}\} 和长度为n的出口流量数据序列{\boldsymbol{B}} = \{ {b_1},{b_2},{b_3}, \ldots ,{b_n}\} ,构建序列{\boldsymbol{A}}{\boldsymbol{B}}之间的距离矩阵{\boldsymbol{D}}

    {\boldsymbol{D}}({\boldsymbol{A}},{\boldsymbol{B}}) = {\left[ {\begin{array}{*{20}{c}} {d(1,1)}& {d(1,2)}&\cdots &{d(1,n)} \\ {d(2,1)}&{d(2,2)}&\cdots &{d(2,n)}\\ \vdots & \vdots &\vdots& \vdots \\ {d(m,1)}& {d(m,2)}& \cdots &{d(m,n)} \end{array}} \right]_{(m \times n)}} (8)

    式中: d(m,n) 表示2个序列中各元素之间的欧氏距离。

    3)利用距离矩阵{\boldsymbol{D}}计算泵冲数据序列{\boldsymbol{A}}与出口流量数据序列{\boldsymbol{B}}之间的最短距离:

    \begin{split} {L_{{\text{min}}}} =& d(m - 1,n - 1)+ \\ &\min[L(m - 1,n),L(m - 1,n - 1),L(m,n - 1)] \end{split} (9)

    式中:{L_{\min }}表示泵冲数据序列{\boldsymbol{A}}和出口流量数据序列{\boldsymbol{B}}之间的最短距离; d(m - 1,n - 1) 为序列A中第m−1个点和序列B中第n−1个点之间的距离; L(i - 1, j - 1) 表示距离矩阵{\boldsymbol{D}}中从元素(1,1)到元素(i - 1,j - 1)之间的最短距离; \min[L(m - 1,n), L(m - 1, n - 1),L(m,n - 1)] 表示距离矩阵中每个元素的累积距离数值为该点左方、上方和左上方3个数值中的最小值。

    4)计算数据序列{\boldsymbol{A}}和数据序列{\boldsymbol{B}}之间的相似度{\rm{sim}}({\boldsymbol{A}},{\boldsymbol{B}})

    {\rm{sim}}({\boldsymbol{A}},{\boldsymbol{B}}) = 1 - {\frac{{L_{\min }}}{k}} (10)

    式中:k表示计算最短距离所用的数据点数;{\rm{sim}}({\boldsymbol{A}},{\boldsymbol{B}})为2个序列之间的相似度。

    {\rm{sim}}({\boldsymbol{A}},{\boldsymbol{B}})越大,2个数据序列越相似。定义阈值s,用来判断泵冲数据序列和出口流量数据序列是否相似。{\rm{sim}}({\boldsymbol{A}},{\boldsymbol{B}}) \geqslant s时,2个序列相似;{\rm{sim}}({\boldsymbol{A}},{\boldsymbol{B}}) < s,2个序列不相似。

    5)以相似度为主要判断依据对工况进行分类。当{\rm{sim}}({\boldsymbol{A}},{\boldsymbol{B}}) \geqslant s且泵冲或出口流量为0时,该时刻的工况为开、停泵工况;其他情况为正常工况。对开、停泵工况判别的结果进行编码处理,正常工况编码为0,开、停泵工况编码为1,最终将工况判别结果转换为网络可以识别的数值类型。

    利用Bi-GRU网络构建溢流与井漏风险监测模型,该模型主要包括数据预处理、数据集划分、模型构建与模型训练等4个部分。

    神经网络模型的识别性能依赖于训练数据的多样性以及质量,为避免数据中的异常值、噪声等影响模型的识别准确率,需要在训练网络前对数据进行预处理。

    由于传感器故障等现场因素,钻井数据中存在孤立型异常数据点。为了在不影响风险识别的前提下剔除孤立型异常点,采用箱线图法[21]对数据中的异常点进行识别,并用该点邻近位置的数据进行替换;为了提高训练数据的质量,利用滑动平均方法抑制数据中的噪声。为了提高模型训练的收敛速度及精度,利用2.1.2节的归一化方法对数据进行归一化处理。

    在模型训练之前,以钻井日志中记录的风险发生时刻为参考点,利用长度为32、步长为1的滑动窗口对数据进行标注。将该参考点之前的数据片段标记为无风险数据,用100表示;将包含该点的数据片段以及该点之后至风险解除前的数据片段标记为风险数据,按照风险类型,将井漏数据标注为010,溢流数据标注为001。

    利用东部某探区23口井的录井数据,构建了溢流与井漏风险数据集,其中20口井的数据作为模型训练及验证数据集,采用其他3口井的数据进行模型测试。数据集中包含2 150组正常样本和1 775组风险样本,每一组样本的时间序列长度均为32,每一组样本中包括泵冲、出口流量、钻井液池体积、钻井工况及独热编码后的训练标签等5个参数。数据集的样本数量及独热编码如表1所示。

    表  1  数据集的样本数量与编码方式
    Table  1.  The sample size of the dataset and encoding method
    类型训练集
    样本数
    验证集
    样本数
    测试集
    样本数
    样本
    总数
    独热
    编码
    正常1 4403603502 150100
    井漏600160215975010
    溢流480120200800001
    下载: 导出CSV 
    | 显示表格

    基于Bi-GRU的溢流与井漏监测模型包括输入层、隐含层与输出层,模型结构如图5所示。

    图  5  基于Bi-GRU的溢流与井漏监测模型的结构
    Figure  5.  Structure of kick and lost circulation monitoring model based on Bi-GRU

    1)输入层。根据现场经验以及溢流与井漏发生时的参数表征,选择钻井工况、钻井液池体积和出口流量时间序列数据作为网络的输入。其中,钻井工况包含正常和开、停泵2种工况。

    2)隐含层。由2层Bi-GRU网络组成。由于待解决问题为多分类问题,选择softmax函数作为隐含层的激活函数。

    3)输出层。由于在划分数据集时对正常、井漏和溢流等3类工况进行了独热编码处理,因此网络的输出层节点数设置为3。模型的输出参数为3类工况对应的概率值,即样本属于每类工况的可能性。

    训练模型时,采用categorical-crossentropy作为损失函数,同时使用Adam优化算法对网络的权重进行更新。损失函数的计算公式为:

    {F_{{\text{l}}}} = \sum\limits_{i = 1}^3 { - ({y_i}\lg{{\hat y}_i})} (11)

    式中:{F_{{\text{l}}}}表示损失值;{y_i}表示第i个类别对应的真实值;{\hat y_i}表示对应的模型输出值。

    模型训练时,batch_size大小设为35,迭代次数为100。基于训练集数据训练Bi-GRU网络,并对网络的权重和偏置等进行更新,直至迭代结束。

    为了验证提出的基于DTW的开、停泵工况判别方法及基于Bi-GRU的溢流与井漏监测方法的性能,利用从20口井中提取的溢流与井漏发生时对应的监测数据,采用提出的方法分别开展了开、停泵工况判别试验和溢流与井漏风险识别试验,并与GRU、LSTM、Bi-LSTM等模型的监测结果进行了对比,以准确率和误报率作为指标,评价模型的识别性能。

    为了验证提出的开、停泵工况判别方法的准确性,以包含200个数据点的泵冲和出口流量数据作为一组,利用20组开、停泵数据和正常钻进数据对提出的方法进行验证。现场数据统计分析结果表明,开泵、停泵时的出口流量变化时刻滞后于泵冲约0.5 min。因此,泵冲和出口流量时间序列采用不同长度的窗口进行截取,窗口移动步长均为1。试验中将泵冲数据序列的长度设置为15,由于现场数据采样间隔为5 s,考虑出口流量存在滞后时间,将出口流量数据序列的长度设置为10。将基于DTW的工况判别结果与实际工况进行比较,计算工况判别的准确率。多次试验结果发现,阈值s取0.40时,工况判别准确率最高。工况判别结果如图6中绿色曲线所示。工况判别值为1代表开、停泵,工况判别值为0代表正常。

    图  6  工况判别结果
    Figure  6.  Drilling condition discrimination results

    基于DTW的工况判别结果与录井报告中记录的开、停泵工况和正常工况一致,工况判别准确率为100%。

    为比较不同模型的识别性能,采用损失值、准确率(accuracy, Acc)和虚警率(false positive rate, FPR)作为模型评价指标。将溢流样本和井漏样本整体看作负样本,正常样本看作正样本,并定义了混淆矩阵(见表2)。

    表  2  混淆矩阵的定义
    Table  2.  Confusion matrix definition
    实际工况判别为正常判别为风险
    正常TPFN
    风险FPTN
    下载: 导出CSV 
    | 显示表格

    准确率表示分类结果正确的比率,可以用来衡量整个模型的分类性能,按下式计算:

    R_{{\rm{acc}}} = \frac{{N_{{\rm{TP}}} + N_{{\rm{TN}}}}}{{N_{\rm{TP}} + N_{\rm{TN}} + N_{\rm{FP}} + N_{\rm{FN}}}} (12)

    式中:NTP表示实际为正常也判别为正常的样本数;NTN表示实际为风险也判别为风险的样本数;NFN表示实际为正常却判别为风险的样本数;NFP表示实际为风险却判别为正常的样本数。

    虚警率表示正常样本被分类为异常的比率,也称误报率,按下式计算:

    R_{\rm{FN}} = \frac{{N_{\rm{FN}}}}{{N_{\rm{TP}} + N_{\rm{FN}}}} (13)

    为验证Bi-GRU网络在溢流与井漏监测中的优势,选择出口流量和钻井液池体积作为模型的输入,分别搭建了LSTM模型、GRU模型、Bi-LSTM模型和Bi-GRU模型,使用相同的数据集和模型超参数进行训练;并利用测试集对模型进行测试,对比分析4个模型的识别准确率和误报率。

    在训练LSTM模型和GRU模型的过程中,当2个模型达到相同的损失值时,GRU模型所需的迭代次数更少;同样地,在训练Bi-LSTM模型和Bi-GRU模型时,Bi-GRU模型迭代60次左右时损失值达到0.40,而Bi-LSTM模型需要迭代80次左右才能达到类似的损失值。Bi-GRU因其网络结构更加简单,需要训练的参数更少,具有更快的迭代速度。

    LSTM、GRU、Bi-LSTM和Bi-GRU等4个模型分类性能的对比结果如图7所示。4个模型的识别准确率分别为82.57%、83.92%、84.10%和85.75%,误报率分别为16.11%、14.99%、18.34%和12.52%。可以看出,Bi-GRU模型和Bi-LSTM模型相较于GRU模型和LSTM模型,识别准确率分别提高了1.53和1.83百分点,表明Bi-LSTM网络和Bi-GRU网络的双向结构具有更好的分类性能。

    图  7  未考虑开停泵工况时不同模型的性能
    Figure  7.  Performance of different models without considering pump on and off

    由以上结果可知,Bi-GRU模型不仅在识别准确率、误报率方面均优于LSTM模型、GRU模型和Bi-LSTM模型,而且具有更高的训练效率。但是,由于以上模型均未考虑开、停泵工况对钻井液池体积和出口流量的影响,部分开、停泵期间的数据会被误识为溢流或井漏风险,因此模型的误报率较高。

    为了测试钻井工况对溢流与井漏监测的影响,将3.2.2节中未考虑开、停泵工况的Bi-GRU模型称为模型1;由于泵冲能够反映钻井泵的开、停状态,以泵冲、钻井液池体积和出口流量为输入参数训练得到的Bi-GRU模型称为模型2;以DTW方法判别的开、停泵工况、出口流量和钻井液池体积为输入参数训练得到的Bi-GRU模型称为模型3。

    模型2和模型3对测试集的识别结果如图8所示。从图8可以看出,模型2的识别准确率为90.98%,误报率为5.81%。分析认为,因为考虑了泵冲对出口流量和钻井液池体积的影响,与模型1相比,识别准确率提高了5.23百分点,误报率降低了6.71百分点。

    图  8  考虑开、停泵工况时不同模型的性能
    Figure  8.  Performance comparison of models considering pump on and off

    模型3的识别准确率为94.25%,误报率为1.12%。这是因为模型3考虑了钻井工况与出口流量和钻井液池体积之间的关联与约束关系,与模型1相比,准确率提高了8.50百分点,误报率降低了11.40百分点。

    由此可见,模型3的识别准确率和误报率皆优于模型2,这是由于在开泵、停泵时,泵冲和开、停泵工况并不是一一映射的关系,在此期间容易出现风险误报。而利用DTW可以计算不同长度时间序列相似性的优势,从泵冲和出口流量的相对变化趋势中提取钻井工况时考虑了泵冲和出口流量在变化时间上的差异,使模型3的性能更好。

    为了验证提出的溢流与井漏监测模型的识别性能,采用BX井的溢流数据和NY井的开、停泵数据对模型进行测试。测试结果表明:结合钻井工况和Bi-GRU的溢流与井漏监测模型在预警时间、识别精度上都优于其他2个模型,且能够对开、停泵工况引起的钻井液池体积异常变化做出准确的判断,减少了风险误报。

    BX井风险发生前后的出口流量和钻井液池体积变化曲线如图9所示(图9中,虚线表示现场发现溢流风险的时间),可以看出,在1 050 s处发现溢流风险,此时钻井泵处于关闭状态,泵冲为0。

    图  9  溢流风险发生时参数的变化
    Figure  9.  Parameter changes during kick

    3个模型的识别结果如图10所示。从图10可以看出,3个模型分别在1 040,1 060和1 020 s时识别到溢流风险,其中模型3在出口流量刚开始上升时就可以识别出溢流风险,识别及时性最好。由于出口流量和钻井液池体积持续上升,模型给出了持续溢流的识别结果。

    图  10  不同模型的溢流识别结果
    Figure  10.  Kick identification results of different models

    开、停泵工况下NY井泵冲等参数的变化情况如图11所示。从图11可以看出,虽然出口流量和钻井液池体积呈现出大幅变化,但此时并没有溢流或井漏风险发生。

    图  11  开、停泵工况下参数的变化
    Figure  11.  Parameter changes during pump on and off

    3个模型的识别结果如图12所示。从图12可以看出,模型1因为没有考虑开泵、停泵对钻井液池体积和出口流量的影响,识别结果误报率较高;模型2在开泵和停泵瞬间存在少量误报,这是由于出口流量的滞后引起的;模型3的识别效果最好,整个过程中未出现风险误报。

    图  12  不同模型的风险识别结果
    Figure  12.  Risk identification results of different models

    1)考虑开、停泵工况下出口流量和钻井液池体积的异常变化对溢流与井漏风险监测的影响,利用深度学习技术,构建了录井参数与溢流和井漏风险之间的关系模型,提出了基于Bi-GRU网络的溢流与井漏智能监测方法。

    2)考虑开、停泵工况对出口流量、钻井液池体积的影响,能够降低模型的误报率。

    3)与现有典型的溢流与井漏监测模型相比,Bi-GRU网络能够充分利用钻井参数时间序列中的历史信息和未来信息,溢流、井漏识别的准确率更高。

    4)在目前研究成果的基础上,建议考虑其他钻井工况对溢流与井漏监测的影响,比如消除起钻、下钻期间钻井液池体积的变化,进一步降低模型的误报率。

  • 图  1   GRU网络记忆单元的结构

    Figure  1.   Structure of the GRU memory cell

    图  2   Bi-GRU网络的结构

    Figure  2.   Structure of Bi-GRU network

    图  3   基于Bi-GRU的溢流与井漏监测方法的流程

    Figure  3.   Flow of kick and lost circulation monitoring method based on Bi-GRU

    图  4   开、停泵期间监测参数的变化

    Figure  4.   Monitoring parameter changes during pump on and off

    图  5   基于Bi-GRU的溢流与井漏监测模型的结构

    Figure  5.   Structure of kick and lost circulation monitoring model based on Bi-GRU

    图  6   工况判别结果

    Figure  6.   Drilling condition discrimination results

    图  7   未考虑开停泵工况时不同模型的性能

    Figure  7.   Performance of different models without considering pump on and off

    图  8   考虑开、停泵工况时不同模型的性能

    Figure  8.   Performance comparison of models considering pump on and off

    图  9   溢流风险发生时参数的变化

    Figure  9.   Parameter changes during kick

    图  10   不同模型的溢流识别结果

    Figure  10.   Kick identification results of different models

    图  11   开、停泵工况下参数的变化

    Figure  11.   Parameter changes during pump on and off

    图  12   不同模型的风险识别结果

    Figure  12.   Risk identification results of different models

    表  1   数据集的样本数量与编码方式

    Table  1   The sample size of the dataset and encoding method

    类型训练集
    样本数
    验证集
    样本数
    测试集
    样本数
    样本
    总数
    独热
    编码
    正常1 4403603502 150100
    井漏600160215975010
    溢流480120200800001
    下载: 导出CSV

    表  2   混淆矩阵的定义

    Table  2   Confusion matrix definition

    实际工况判别为正常判别为风险
    正常TPFN
    风险FPTN
    下载: 导出CSV
  • [1] 张晓诚,霍宏博,林家昱,等. 渤海油田裂缝性油藏地质工程一体化井漏预警技术[J]. 石油钻探技术,2022,50(6):72–77.

    ZHANG Xiaocheng, HUO Hongbo, LIN Jiayu, et al. Integrated geology-engineering early warning technologies for lost circulation of fractured reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(6): 72–77.

    [2]

    MAO Youli, ZHANG Peng. An automated kick alarm system based on statistical analysis of real-time drilling data[R]. SPE 197275, 2019.

    [3] 孙伟峰,李威桦,王健,等. 基于C#与Python混合编程的钻井溢漏风险智能识别平台[J]. 实验技术与管理,2021,38(11):166–172.

    SUN Weifeng, LI Weihua, WANG Jian, et al. Intelligent identification platform of drilling kick and loss risk based on mixed programming of C# and Python[J]. Experimental Technology and Management, 2021, 38(11): 166–172.

    [4] 戴永寿,岳炜杰,孙伟峰,等. “三高” 油气井早期溢流在线监测与预警系统[J]. 中国石油大学学报(自然科学版),2015,39(3):188–194.

    DAI Yongshou, YUE Weijie, SUN Weifeng, et al. Online monitoring and warning system for early kick foreboding on ‘three high’ wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3): 188–194.

    [5]

    YI M, ASHOK P, RAMOS D, et al. Natural language processing applied to reduction of false and missed alarms in kick and lost circulation detection[R]. SPE 206340, 2021.

    [6] 杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13.

    YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13.

    [7] 袁俊亮,范白涛,幸雪松,等. 基于朴素贝叶斯算法的钻井溢流实时预警研究[J]. 石油钻采工艺,2021,43(4):455–460.

    YUAN Junliang, FAN Baitao, XING Xuesong, et al. Real-time early warning of drilling overflow based on naive Bayes algorithm[J]. Oil Drilling & Production Technology, 2021, 43(4): 455–460.

    [8] 邓正强,兰太华,林阳升,等. 川渝地区防漏堵漏智能辅助决策平台研究与应用[J]. 石油钻采工艺,2021,43(4):461–466.

    DENG Zhengqiang, LAN Taihua, LIN Yangsheng, et al. Research and application of intelligent assistant decision making platform of lost circulation prevention and control in Sichuan-Chongqing Area[J]. Oil Drilling & Production Technology, 2021, 43(4): 461–466.

    [9] 李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术,2022,50(2):1–8.

    LI Zhong. Progress and prospects of digitization and intelligentization of CNOOC’s oil and gas well engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1–8.

    [10] 王茜,张菲菲,李紫璇,等. 基于钻井模型与人工智能相耦合的实时智能钻井监测技术[J]. 石油钻采工艺,2020,42(1):6–15.

    WANG Xi, ZHANG Feifei, LI Zixuan, et al. Real-time intelligent drilling monitoring technique based on the coupling of drilling model and artificial intelligence[J]. Oil Drilling & Production Technology, 2020, 42(1): 6–15.

    [11]

    SEABE P L, MOUTSINGA C R B, PINDZA E. Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: A deep learning approach[J]. Fractal and Fractional, 2023, 7(2): 203. doi: 10.3390/fractalfract7020203

    [12] 刘汉桥. 基于数据挖掘的海洋钻井井涌早期预测方法研究[D]. 青岛: 中国石油大学(华东), 2020.

    LIU Hanqiao. Study on early prediction for offshore drilling well kick based on data mining[D]. Qingdao: China University of Petroleum(East China), 2020.

    [13]

    SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673–2681. doi: 10.1109/78.650093

    [14]

    WANG Yanting, ZHENG Dingkun, JIA Rong. Fault diagnosis method for MMC-HVDC based on Bi-GRU neural network[J]. Energies, 2022, 15(3): 994. doi: 10.3390/en15030994

    [15]

    KIM J. Finding the best performing pre-trained CNN model for image classification: Using a class activation map to spot abnormal parts in diabetic retinopathy image[J]. American Journal of Biomedical and Life Sciences, 2021, 9(4): 176–181. doi: 10.11648/j.ajbls.20210904.11

    [16]

    NIE Qi, LI Yun, XIONG Wenying, et al. Health recognition algorithm for sports training based on Bi-GRU neural networks[J]. Journal of Healthcare Engineering, 2021, 2021: 1579746.

    [17]

    LIU Xun, YOU Junling, WU Yulei, et al. Attention-based bidirectional GRU networks for efficient HTTPS traffic classification[J]. Information Sciences, 2020, 541: 297–315. doi: 10.1016/j.ins.2020.05.035

    [18]

    MATEUS B C, MENDES M, FARINHA J T, et al. Comparing LSTM and GRU models to predict the condition of a pulp paper press[J]. Energies, 2021, 14(21): 6958. doi: 10.3390/en14216958

    [19]

    WANG Guangbin, CHEN Jinhua, ZHONG Zhixian, et al. Multi-source heterogeneous fusion entropy ratio distance feature of bearing performance degradation based on DTW[J]. Vibroengineering Procedia, 2021, 39: 17–23. doi: 10.21595/vp.2021.22269

    [20]

    TANG Hewei, ZHANG Shang, ZHANG Feifei, et al. Time series data analysis for automatic flow influx detection during drilling[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1103–1111. doi: 10.1016/j.petrol.2018.09.018

    [21] 刘翔,张立华,戴泽源,等. 一种无输入参数的强噪声背景下ICESat-2点云去噪方法[J]. 光子学报,2022,51(11):354–364.

    LIU Xiang, ZHANG Lihua, DAI Zeyuan, et al. A parameter-free denoising method for ICESat-2 point cloud under strong noise[J]. Acta Photonica Sinica, 2022, 51(11): 354–364.

  • 期刊类型引用(10)

    1. 刘凯,李超跃,姚振杰,杨康,王苛宇. CO_2驱混相带演化规律研究进展. 油气与新能源. 2025(01): 1-8 . 百度学术
    2. 霍宏博,刘东东,陶林,王德英,宋闯,何世明. 基于CO_2提高采收率的海上CCUS完整性挑战与对策. 石油钻探技术. 2023(02): 74-80 . 本站查看
    3. 李蕾,郑自刚,杨承伟,陈征,张文兴,徐北辰. 超低渗油藏超临界CO_2驱油特征及原油动用能力. 科学技术与工程. 2021(29): 12551-12558 . 百度学术
    4. 项鹏心. 二氧化碳驱油技术研究及应用. 石化技术. 2021(12): 33-34 . 百度学术
    5. 李友全,阎燕,于伟杰. 利用试井技术确定低渗透油藏CO_2驱替前缘的方法. 油气地质与采收率. 2020(01): 120-125 . 百度学术
    6. 郑玉飞,李翔,徐景亮,于萌. 渤海P油田层内生成CO_2调驱技术. 石油钻探技术. 2020(02): 108-112 . 本站查看
    7. 阎燕,李友全,于伟杰,王杰,刘同敬,王朝明. 低渗透油藏CO_2驱采油井试井模型. 断块油气田. 2018(01): 80-84 . 百度学术
    8. 钱坤,杨胜来,马轩,窦洪恩,黄宇. 超低渗透油藏CO_2吞吐利用率实验研究. 石油钻探技术. 2018(06): 77-81 . 本站查看
    9. 唐万举,邓学峰,卢瑜林,王萍,斯容,周志峰. 致密储层CO_2驱油实验. 断块油气田. 2018(06): 757-760 . 百度学术
    10. 张丁涌. 超稠油油藏HDCS开采技术优化. 断块油气田. 2017(03): 409-412 . 百度学术

    其他类型引用(5)

图(12)  /  表(2)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  195
  • PDF下载量:  124
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2023-03-16
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回