Design and Application of a Hydraulic Rotary Sidewall Coring Tool at High Temperatures
-
摘要:
为解决勘探井获取深地层岩心困难的问题,研制了一种最高工作温度达205 ℃、具有高可靠性的液压旋转井壁取心仪。该取心仪由地面系统、控制采集短节和机械液压节组成,并采用一体式保温瓶技术、被动式热管理技术和解卡技术,提高了取心仪的耐温性和工程安全性。通过模拟仿真和地面测试,验证了这些关键技术的功能。现场试验结果表明,该取心仪可在189 ℃高温高压环境、钻井液相对密度和地层压差较大的探井正常作业,平均岩心收获率大于90%,且具有耐高温、防压差卡钻、取心时效和岩心收获率高的特点,尤其是对存在扩径、缩径和井壁垮塌等问题的井段具有良好的适应能力和较高的安全可靠性。
Abstract:Since it is difficult to obtain stratigraphic cores in deep exploration wells, a hydraulic rotary sidewall coring tool with a maximum operating temperature of 205 °C and high reliability was developed. The coring tool is composed of a ground system, a control acquisition short section, and a mechanical hydraulic section, and adopts an integrated thermos bottle technology, passive thermal management technology, and stuck-freeing technology, which effectively improve its temperature resistance and engineering safety. The performance of these key technical functions was verified through simulation and ground tests. The actual operation results show that the tool can operate normally in exploratory wells with a high temperature of 189 °C and high pressure, high relative density of drilling fluid, and large formation pressure difference, and further, the average core recovery rate exceeds 90%. In addition, it has the characteristics of high temperature resistance, stick and jam prevention, and high coring efficiency and core recovery rate and shows excellent adaptability and high safety and reliability in solving problems in complex well sections, such as hole enlargement, hole contraction, and borehole collapse.
-
-
表 1 2MRCT-HT作业统计
Table 1 Operation statistics of 2MRCT-HT
井号 深度/m 井温/℃ 钻井液相对密度 取心数 岩心收获率,% 计划 实际 YC23-1-1 4 437 174 2.25 16 14 87 BD21-1-3d 5 115 160 1.42 43 43 100 DF13-3-1 2 916 134 2.04 47 43 91 WC8-3N-2d 3 850 132 1.37 33 33 100 WC16-2-2 4 612 160 1.36 50 47 94 HZ21-8-2 4 786 176 1.62 50 50 100 PY25-2-3 5 026 162 1.73 18 18 100 BD29-1-2D 5 055 189 1.63 82(2次) 82(2次) 100 -
[1] 信召玲,苏鹤成,张国强,等. 旋转井壁取心作业难点及解决方案[J]. 中国石油和化工标准与质量,2019,39(21):111–112. XIN Zhaoling, SU Hecheng, ZHANG Guoqiang, et al. Difficulties and solutions of rotary sidewall coring operation[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(21): 111–112.
[2] 王莹,杨帆,陆敬武,等. 直驱式旋转井壁取心仪器电路设计[J]. 石油管材与仪器,2017,3(5):9–11. WANG Ying, YANG Fan, LU Jingwu, et al. Circuit design for direct-drive extended rotary sidewall coring tools[J]. Petroleum Tubular Goods & Instruments, 2017, 3(5): 9–11.
[3] 王晋. 旋转式井壁取心地面系统设计与实现[D]. 长春: 吉林大学, 2019. WANG Jin. Design and implementation of surface system for rotary sidewall coring[D]. Changchun: Jilin University, 2019.
[4] 郝桂青,庞希顺,欧阳剑. 增强型旋转式井壁取芯器技术及应用[J]. 石油仪器,2011,25(5):22–24. HAO Guiqing, PANG Xishun, OUYANG Jian. Enhanced rotary sidewall core technology and its application[J]. Petroleum Instruments, 2011, 25(5): 22–24.
[5] 苏鹤成,苑仁国. 有效提高旋转井壁取心收获率的工艺探讨[J]. 化工管理,2014(33):187. SU Hecheng, YUAN Renguo. Discussion on the technology of effectively improving the rotary sidewall coring tool[J]. Chemical Enterprise Management, 2014(33): 187.
[6] 杨兴琴,余迎. 国外3种大直径旋转井壁取心器性能对比[J]. 测井技术,2012,36(6):610. YANG Xingqin, YU Ying. Performance comparison of three foreign large diameter rotary sidewall coring tools[J]. Well Logging Technology, 2012, 36(6): 610.
[7] 牛延吉,刘先平,嵇成高,等. 大直径旋转井壁取心仪研制与应用[J]. 测井技术,2018,42(2):235–237. NIU Yanji, LIU Xianping, JI Chenggao, et al. Development and application of the large diameter rotary sidewall coring tool[J]. Well Logging Technology, 2018, 42(2): 235–237.
[8] 陆敬武,曹扬,杨帆,等. 新型旋转井壁取心仪在大庆油田的应用[J]. 测井技术,2016,40(6):761–764. LU Jingwu, CAO Yang, YANG Fan, et al. Application of enhanced rotary sidewall coring logging tool in Daqing Oilfield[J]. Well Logging Technology, 2016, 40(6): 761–764.
[9] 邓强,谭忠健,尚锁贵,等. 新型旋转井壁取心工具在渤海油田的应用[J]. 石油天然气学报,2012,34(1):157–160. DENG Qiang, TAN Zhongjian, SHANG Suogui, et al. The application of a new rotary wall coring tool in Bohai Oilfield[J]. Journal of Oil and Gas Technology, 2012, 34(1): 157–160.
[10] 常毓强. 大直径旋转井壁取心测井技术及临兴气田应用[J]. 当代化工研究,2022(8):115–117. CHANG Yuqiang. Large-diameter rotating borehole core logging technology and its application in Linxing Gas Field[J]. Modern Chemical Research, 2022(8): 115–117.
[11] 刘辉,马辉运,曾立新,等. 高温高压井下工具试验系统的研制与应用[J]. 石油机械,2019,47(12):100–105. LIU Hui, MA Huiyun, ZENG Lixin, et al. High temperature and high pressure downhole tool test system[J]. China Petroleum Machinery, 2019, 47(12): 100–105.
[12] 罗鸣,冯永存,桂云,等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021,6(2):228–244. doi: 10.3969/j.issn.2096-1693.2021.02.018 LUO Ming, FENG Yongcun, GUI Yun, et al. Development status and prospect of key technologies for high temperature and high pressure drilling[J]. Petroleum Science Bulletin, 2021, 6(2): 228–244. doi: 10.3969/j.issn.2096-1693.2021.02.018
[13] 王喜辉,张忠强. 超高温高压井取心技术在LD13井的应用[J]. 海洋石油,2022,42(4):91–94. WANG Xihui, ZHANG Zhongqiang. Application of coring technology in ultra high temperature and high pressure well in Well LD13[J]. Offshore Oil, 2022, 42(4): 91–94.
[14] 王健. FCT-2旋转式井壁取心收获率影响因素浅析[J]. 石油管材与仪器,2020,6(1):94–97. WANG Jian. Influencing factors analysis on FCT-2 rotary sidewall coring recovery rate[J]. Petroleum Tubular Goods & Instruments, 2020, 6(1): 94–97.
[15] 刘铁民,冯永仁,田志宾. 一种新型的岩心检测原理分析研究及应用[J]. 石油化工应用,2021,40(6):67–71. LIU Tiemin, FENG Yongren, TIAN Zhibin. Analysis and application of a new core detection principle[J]. Petrochemical Industry Application, 2021, 40(6): 67–71.
[16] 魏赞庆,彭嘉乐,田志宾,等. 旋转井壁取心仪热管理系统设计及应用[J]. 测井技术,2022,46(3):251–256. WEI Zanqing, PENG Jiale, TIAN Zhibin, et al. Design and application of thermal management system for rotary sidewall coring tool[J]. Well Logging Technology, 2022, 46(3): 251–256.
[17] 魏赞庆,彭嘉乐,蓝威,等. 高温井下低熔点合金储热模块封装及试验[J]. 石油机械,2022,50(11):9–15. WEI Zanqing, PENG Jiale, LAN Wei, et al. Package and test of low-melting alloy heat storage module in high-temperature wellbore[J]. China Petroleum Machinery, 2022, 50(11): 9–15.
[18] PENG Jiale, WANG Yujun, DING Siqi, et al. Rapid detection of the vacuum failure of logging tools based on the variation in equivalent thermal conductivity[J]. International Journal of Thermal Sciences, 2023, 188: 108245. doi: 10.1016/j.ijthermalsci.2023.108245
[19] DI Xiaobo, GAO Yimin, BAO Chonggao, et al. Thermal insulation property and service life of vacuum insulation panels with glass fiber chopped strand as core materials[J]. Energy and Buildings, 2014, 73: 176–183. doi: 10.1016/j.enbuild.2014.01.010
[20] BAETENS R, JELLE B P, THUE J V, et al. Vacuum insulation panels for building applications: A review and beyond[J]. Energy and Buildings, 2010, 42(2): 147–172. doi: 10.1016/j.enbuild.2009.09.005
[21] BOUQUEREL M, DUFORESTEL T, BAILLIS D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas: A review[J]. Energy and Buildings, 2012, 54: 320–336. doi: 10.1016/j.enbuild.2012.07.034
[22] PENG Jiale, LAN Wei, WEI Fulong, et al. A numerical model coupling multiple heat transfer modes to develop a passive thermal management system for logging tool[J]. Applied Thermal Engineering, 2023, 223: 120011. doi: 10.1016/j.applthermaleng.2023.120011
[23] LAN Wei, ZHANG Jiawei, PENG Jiale, et al. Distributed thermal management system for downhole electronics at high tempera-ture[J]. Applied Thermal Engineering, 2020, 180: 115853. doi: 10.1016/j.applthermaleng.2020.115853
[24] 王新杰. 旋转式井壁取芯器的设计与机构运动仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. WANG Xinjie. Study on the design and kinematic simulation of the rotary sidewall coring tool[D]. Harbin: Harbin Institute of Technology, 2006.
-
期刊类型引用(3)
1. 张小佳,刘文红,申昭熙,钱征华,张应红,周海洋. 基于RFID技术的石油钻具管理系统研制. 石油钻探技术. 2022(06): 107-111 . 本站查看
2. 崔龙兵,胡亮,席步祥,阮臣良,程光明,赵建军. 射频识别随钻扩眼器的研制与应用. 钻采工艺. 2020(04): 71-74+10 . 百度学术
3. 高胜,滕向松,张丽巍,刘跃宝,范立华. 井下无线射频识别系统作业环境影响因素分析. 石油机械. 2019(01): 86-92 . 百度学术
其他类型引用(0)