深水油气开采风险评估及安全控制技术进展与发展建议

张来斌, 谢仁军, 殷启帅

张来斌,谢仁军,殷启帅. 深水油气开采风险评估及安全控制技术进展与发展建议[J]. 石油钻探技术,2023, 51(4):55-65. DOI: 10.11911/syztjs.2023036
引用本文: 张来斌,谢仁军,殷启帅. 深水油气开采风险评估及安全控制技术进展与发展建议[J]. 石油钻探技术,2023, 51(4):55-65. DOI: 10.11911/syztjs.2023036
ZHANG Laibin, XIE Renjun, YIN Qishuai. Technical progress and development suggestions for risk assessment and safety control of deep-water oil and gas exploitation [J]. Petroleum Drilling Techniques,2023, 51(4):55-65. DOI: 10.11911/syztjs.2023036
Citation: ZHANG Laibin, XIE Renjun, YIN Qishuai. Technical progress and development suggestions for risk assessment and safety control of deep-water oil and gas exploitation [J]. Petroleum Drilling Techniques,2023, 51(4):55-65. DOI: 10.11911/syztjs.2023036

深水油气开采风险评估及安全控制技术进展与发展建议

基金项目: 中国工程院咨询研究重点项目“油气工程技术2035发展战略研究”课题5“油气生产安全与保障技术发展战略研究”(编号:2018-XZ-09-05)、国家自然科学基金项目“深水钻井气侵运移规律与气侵速率表征研究”(编号:52101340)联合资助
详细信息
    作者简介:

    张来斌(1961—),男,安徽铜陵人,1982年毕业于华东石油学院石油矿场机械专业,1985年获华东石油学院北京研究生部石油机械专业硕士学位,1991年获石油大学(北京)机械工程专业博士学位,教授,中国工程院院士,主要从事油气生产安全研究。系本刊编委。E-mail: zhanglb@cup.edu.cn

  • 中图分类号: TE58

Technical Progress and Development Suggestions for Risk Assessment and Safety Control of Deep-Water Oil and Gas Exploitation

  • 摘要:

    深水油气资源是国际油气勘探开发的主战场和技术争夺的制高点,南海深水油气资源丰富,但面临更恶劣的深水海洋环境、更复杂的浅层地质灾害、更具挑战的深层地质条件和更苛刻的深水油气开采工况,致灾机理复杂,作业风险极高,探索适用于南海深水油气开采的风险评估及安全控制技术体系,是确保深水油气安全高效开采的关键。针对深水油气开采面临的海洋环境、浅层灾害、深层地质、气井开采等四大挑战,通过技术攻关与工程实践,形成了具有南海特色的深水油气开采风险评估基础理论及关键技术体系,包括深水海洋环境风险评估与控制、深水浅层地质灾害预测与控制、深水钻井井控与应急救援、深水油气开采设施安全检测及监测等关键技术,指出超深水、深水深层、深远海等待勘探领域亟需解决复杂井作业风险高、关键核心装备和工程软件依赖进口、深水安全环保要求极高、数字智能化转型迫切等重大问题,提出了持续追求本质安全、推进关键装备和工程软件的国产化、增强高效风险防控与应急能力、智能化保安全等发展建议,以进一步推动深水油气开采风险评估及安全控制技术的发展与进步,实现南海深水油气安全、高效、自主、可控开发。

    Abstract:

    Deep-water is the main battlefield of international oil and gas exploration and development and the pinnacle of technological competition. Although the deep-water oil and gas resources in the South China Sea are abundant, they confront a harsher marine environment, more complex shallow geological disasters, more challenging deep geological regimes, and more demanding exploitation conditions. In addition, the disaster-triggering mechanisms are complicated, and the operational risk is high. Hence, a technical system for risk assessment and safety control of oil and gas exploitation in the South China Sea is the key to ensuring the safe and efficient development of deep-water oil and gas. In this paper, a system for the basic theory and key technologies to assess the risks of deep-water oil and gas exploitation in the South China Sea was established on the basis of technical breakthroughs and engineering practice. Aiming to tackle the challenges of the marine environment, shallow-formation hazards, deep-formation geology, and gas well exploitation risks confronted, this system incorporated key technologies regarding the risk assessment and control of the deep marine environment, deep-water shallow geological disaster prediction and control, deep-water well control and emergency rescue, safety detection and monitoring protocols for exploitation facilities in deep-water oil and gas operations, etc. Moreover, major problems seeking urgent solutions were pointed out for such to-be-explored areas as ultra-deep water, deep formations in deep water, and the open sea. These problems included high operational risks of complex wells, dependence on the import of key and core equipment and engineering software, demanding requirements for deep-water safety and environmental protection, and an urgent need for digital and intelligent transformation, etc. On this basis, the following development suggestions were put forward: continuous pursuit of intrinsic safety, localization of key equipment and engineering software, stronger efficient risk prevention and control and emergency response capabilities, and intelligent safety, etc. These suggestions are expected to promote the technical advance in risk assessment and safety control of deep-water oil and gas exploitation and achieve safe, efficient, independent, and controllable exploitation of deep-water oil and gas in the South China Sea.

  • 图  1   深水钻井防台警戒区

    Figure  1.   Typhoon warning area in deep-water drilling

    图  2   浅层气风险五级防控技术

    Figure  2.   Five-level control technology for gas hazards in shallow formations

    表  1   不同地区的海洋环境因素对比

    Table  1   Comparison of marine environmental conditions in different areas

    环境因素墨西哥湾北海西非南海
    台风/飓风
    冬季风
    涌浪(低频波)
    内孤立波
    下载: 导出CSV

    表  2   深水钻井内波应对策略

    Table  2   Internal wave response strategy during deep-water drilling

    内波等级波致流流速/(m·s−1波致流加速度/(km·s−2应对措施
    u<0.8a<3记录内波信息,平台不需要采取应对措施
    0.8≤u<1.03≤a<4监测预警系统发出警报,但是平台不需要采取应对措施
    1.0≤u<1.54≤a<5监测预警系统发出应急响应,将平台船头朝向调整为内波来向,以减少侧面冲击力
    非常强u≥1.5a≥5停止一切水下作业
    下载: 导出CSV
  • [1] 宫柯. 海上油气勘探60年[J]. 石油知识,2019(6):20–22.

    GONG Ke. 60 years of offshore oil and gas exploration[J]. Pretroleum Knowledge, 2019(6): 20–22.

    [2] 高德利,张广瑞,王宴滨. 中国海洋深水油气工程技术与装备创新需求预见及风险分析[J]. 科技导报,2022,40(13):6–16.

    GAO Deli, ZHANG Guangrui, WANG Yanbin. Innovation demand foresight and risk analysis of technologies and equipment for deepwater oil & gas engineering in China[J]. Science & Technology Review, 2022, 40(13): 6–16.

    [3] 李中,谢仁军,吴怡,等. 中国海洋油气钻完井技术的进展与展望[J]. 天然气工业,2021,41(8):178–185.

    LI Zhong, XIE Renjun, WU Yi, et al. Progress and prospect of CNOOC’s oil and gas well drilling and completion technologies[J]. Natural Gas Industry, 2021, 41(8): 178–185.

    [4] 刘书杰, 谢仁军, 仝刚, 等. 中国海洋石油集团有限公司深水钻完井技术进展及展望[J]. 石油学报, 2019, 40(增刊2): 168−173.

    LIU Shujie, XIE Renjun, TONG Gang, et al. Progress and prospect of deepwater well drilling and completion technique of CNOOC[J]. Acta Petrolei Sinica, 2019, 40(supplement 2): 168−173.

    [5] 刘正礼,胡伟杰. 南海深水钻完井技术挑战及对策[J]. 石油钻采工艺,2015,37(1):8–12.

    LIU Zhengli, HU Weijie. Countermeasures and challenges of deepwater drilling and completion technology in South China Sea[J]. Oil Drilling & Production Technology, 2015, 37(1): 8–12.

    [6] 李中,方满宗,李磊. 南海西部深水钻井实践[J]. 石油钻采工艺,2015,37(1):92–95.

    LI Zhong, FANG Manzong, LI Lei. Drilling practices of deepwater well in west of South China Sea[J]. Oil Drilling & Production technology, 2015, 37(1): 92–95.

    [7] 谢玉洪. 中国海油近海油气勘探实践与思考[J]. 中国海上油气,2020,32(2):1–13.

    XIE Yuhong. Practices and thoughts of CNOOC offshore oil and gas exploration[J]. China Offshore Oil and Gas, 2020, 32(2): 1–13.

    [8] 谢玉洪,张功成,唐武,等. 南海北部深水区油气成藏理论技术创新与勘探重大突破[J]. 天然气工业,2020,40(12):1–11. doi: 10.3787/j.issn.1000-0976.2020.12.001

    XIE Yuhong, ZHANG Gongcheng, TANG Wu, et al. Theoretical and technological innovation of oil and gas accumulation and major exploration breakthroughs in deep-water areas, northern South China Sea[J]. Natural Gas Industry, 2020, 40(12): 1–11. doi: 10.3787/j.issn.1000-0976.2020.12.001

    [9] 刘书杰,吴怡,谢仁军,等. 深水深层井钻井关键技术发展与展望[J]. 石油钻采工艺,2021,43(2):139–145.

    LIU Shujie, WU Yi, XIE Renjun, et al. Development and prospect of the key technologies for the drilling of deep wells in deep water[J]. Oil Drilling & Production Technology, 2021, 43(2): 139–145.

    [10] 韦红术,王荣耀,张玉亭,等. 南海深水钻井防台风应急技术[J]. 石油钻采工艺,2015,37(1):151–153.

    WEI Hongshu, WANG Rongyao, ZHANG Yuting, et al. Anti-typhoon emergency technology of deepwater drilling in South China Sea[J]. Oil Drilling & Production Technology, 2015, 37(1): 151–153.

    [11] 陈帅,俞金林,王靖凯,等. 孤立内波对动力定位船舶作业的影响和应对措施[J]. 船舶与海洋工程,2020,36(4):75–78.

    CHEN Shuai, YU Jinlin, WANG Jingkai, et al. Risk of solitary internal waves on the operation of dynamic positioning vessel and its countermeasures[J]. Naval Architecture and Ocean Engineering, 2020, 36(4): 75–78.

    [12] 胡伟杰,刘正礼,陈彬. 南海内波流对深水钻井的影响及对策[J]. 石油钻采工艺,2015,37(1):160–162.

    HU Weijie, LIU Zhengli, CHEN Bin. Impacts of internal waves in the South China Sea on deepwater drilling safety and corresponding countermeasures[J]. Oil Drilling & Production Technology, 2015, 37(1): 160–162.

    [13] 周波,杨进,张百灵,等. 海洋深水浅层地质灾害预测与控制技术[J]. 海洋地质前沿,2012,28(1):51–54.

    ZHOU Bo, YANG Jin, ZHANG Bailing, et al. Prediction and control technology of shallow geological hazards in deepwater area[J]. Marine Geological Frontiers, 2012, 28(1): 51–54.

    [14] 武胜男,陈茂玉,樊建春,等. 中国南海高温高压井钻完井损失工时事件统计分析[J]. 中国安全生产科学技术,2020,16(5):12–18.

    WU Shengnan, CHEN Maoyu, FAN Jianchun, et al. Statistical analysis on loss man-hours events in drilling and completion of HTHP well in South China Sea[J]. Journal of Safety Science and Tchnology, 2020, 16(5): 12–18.

    [15] 彭东华,董绍华,张行,等. 冲蚀磨损在油气管道行业的研究进展[J]. 油气储运,2021,40(7):730–741.

    PENG Donghua, DONG Shaohua, ZHANG Hang, et al. Research progress of erosion wear in oil and gas pipeline industry[J]. Oil & Gas Storage and Transportation, 2021, 40(7): 730–741.

    [16] 李中. 中国海油深水钻井技术进展及发展展望[J]. 中国海上油气,2021,33(3):114–120.

    LI Zhong. Progress and prospect of deepwater drilling technology in CNOOC[J]. China Offshore Oil and Gas, 2021, 33(3): 114–120.

    [17] 刘正礼,张浩,阳文学,等. 台风作用下锚泊定位半潜式钻井平台动力特性研究[J]. 石油钻探技术,2015,43(4):37–42.

    LIU Zhengli, ZHANG Hao, YANG Wenxue, et al. The dynamic characteristics of mooring semi-submersible drilling platform in typhoon[J]. Petroleum Drilling Techniques, 2015, 43(4): 37–42.

    [18] 王火平,陈亮,郭延良,等. 海洋内孤立波预警监测识别技术及其在流花16-2油田群开发中的应用[J]. 海洋工程,2021,39(2):162–170.

    WANG Huoping, CHEN Liang, GUO Yanliang, et al. Observing, identification and early warning technology of internal solitary wave and its application in Liuhua 16-2 oilfield group development pro-ject[J]. The Ocean Engineering, 2021, 39(2): 162–170.

    [19] 蔡树群,何建玲,谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展,2011,26(7):703–710.

    CAI Shuqun, HE Jianling, XIE Jieshuo. Recent decadal progress of the study on internal solitons in the South China Sea[J]. Advances in Earth Science, 2011, 26(7): 703–710.

    [20] 杨进,傅超,刘书杰,等. 超深水浅层建井关键技术创新与实践[J]. 石油学报,2022,43(10):1500–1508.

    YANG Jin, FU Chao, LIU Shujie, et al. Key technological innovation and practice of well construction in ultra-deepwater shallow formations[J]. Acta Petrolei Sinica, 2022, 43(10): 1500–1508.

    [21]

    LONG Yang, YANG Jin, YIN Qishuai, et al. Numerical simulation study on the mechanism of releasing ultra-deep water shallow gas by drilling pilot holes[J]. Geoenergy Science and Engineering, 2023, 221: 111294.

    [22]

    CAO Bohan, YIN Qishuai, GUO Yingying, et al. Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling[J]. Reliability Engineering & System Safety, 2023, 232: 109079.

    [23] 徐群,陈国明,王国栋,等. 无隔水管海洋钻井技术[J]. 钻采工艺,2011,34(1):11–13. doi: 10.3969/j.issn.1006-768X.2011.01.004

    XU Qun, CHEN Guoming, WANG Guodong, et al. Research and application prospect of riserless mud recovery drilling technique[J]. Drilling & Production Technology, 2011, 34(1): 11–13. doi: 10.3969/j.issn.1006-768X.2011.01.004

    [24] 马宝金, 王鄂川, 张贺恩, 等. 深水无隔水管钻井钻具稳定性计算分析[J]. 石油工程建设, 2020, 46(增刊1): 177−184.

    MA Baojin, WANG Echuan, ZHANG Heen, et al. Analysis and calculation of drill tool stability in deepwater riserless drilling[J]. Petroleum Engineering Construction, 2020, 46(supplement1): 177−184.

    [25] 邸建伟, 张贺恩, 李晶, 等. 深水钻井自反馈动态压井工业用机设计与应用[J]. 石油工程建设, 2020, 46(增刊1): 195−201.

    DI Jianwei, ZHANG Heen, LI Jing, et al. Design and application of self-feedback dynamic well killing machine for deepwater drill-ing[J]. Petroleum Engineering Construction, 2020, 46(supplement1): 195−201.

    [26] 赵新亮. 动态压井钻井的应用技术研究[D]. 北京: 中国石油大学(北京), 2019.

    ZHAO Xinliang. Research on application technology of dynamic kill drilling[D]. Beijing: China University of Petroleum(Beijing), 2019.

    [27] 李迅科,周建良,李嗣贵,等. 深水表层钻井动态压井装置的研制与应用试验[J]. 中国海上油气,2013,25(6):70–74.

    LI Xunke, ZHOU Jianliang, LI Sigui, et al. Development and application test of the dynamic killing unit for deep water top-hole drilling[J]. China Offshore Oil and Gas, 2013, 25(6): 70–74.

    [28] 吴彬,向兴金,舒福昌,等. 海洋深水表层动态压井钻井液体系研究[J]. 石油天然气学报,2012,34(3):114–117. doi: 10.3969/j.issn.1000-9752.2012.03.023

    WU Bin, XIANG Xingjin, SHU Fuchang, et al. Study on dynamic killing and drilling (DKD) fluids for drilling in deepwater wells[J]. Journal of Petroleum and Natural Gas, 2012, 34(3): 114–117. doi: 10.3969/j.issn.1000-9752.2012.03.023

    [29] 杨进,张百灵,周波,等. 深水浅层气地质灾害声波识别预测技术[J]. 石油钻采工艺,2015,37(1):143–146.

    YANG Jin, ZHANG Bailing, ZHOU Bo, et al. Geological disaster acoustic wave identification and prediction technology of deepwater shallow gas[J]. Oil Drilling & Production Technology, 2015, 37(1): 143–146.

    [30] 吴时国,孙运宝,王秀娟,等. 南海北部深水盆地浅水流的地球物理特性及识别[J]. 地球物理学报,2010,53(7):1681–1690.

    WU Shiguo, SUN Yunbao, WANG Xiujuan, et al. Geophysical signature and detection of shallow water flow in the deepwater basin of the northern South China Sea[J]. Chinese Journal of Geophysics, 2010, 53(7): 1681–1690.

    [31] 任韶然,宫智武,张亮,等. 南海北部陆坡浅水流评估及深水钻井防治措施[J]. 中国石油大学学报(自然科学版),2017,41(4):99–106.

    REN Shaoran, GONG Zhiwu, ZHANG Liang, et al. Shallow water flow hazard assessment in the northern slope of the South China Sea and control measures during deepwater drilling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(4): 99–106.

    [32] 王磊,杨进,李莅临,等. 深水含水合物地层钻井井口稳定性研究[J]. 岩土工程学报,2022,44(12):2312–2318.

    WANG Lei, YANG Jin, LI Lilin, et al. Wellhead stability in gas hydrate formation during deep-water drilling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2312–2318.

    [33] 杨进,严德,田瑞瑞,等. 深水喷射下表层导管合理钻头伸出量计算[J]. 石油勘探与开发,2013,40(3):367–370. doi: 10.11698/PED.2013.03.16

    YANG Jin, YAN De, TIAN Ruirui, et al. Bit stick-out calculation for the deepwater conductor jetting technique[J]. Petroleum Exploration and Development, 2013, 40(3): 367–370. doi: 10.11698/PED.2013.03.16

    [34] 杨进. 深水油气井表层导管下入深度计算方法[J]. 石油学报,2019,40(11):1396–1406. doi: 10.7623/syxb201911010

    YANG Jin. Calculation method of surface conductor setting depth in deepwater oil and gas wells[J]. Acta Petrolei Sinica, 2019, 40(11): 1396–1406. doi: 10.7623/syxb201911010

    [35] 周波,杨进,周建良,等. 深水钻井喷射下导管排量设计方法[J]. 石油钻探技术,2016,44(3):21–26. doi: 10.11911/syztjs.201603004

    ZHOU Bo, YANG Jin, ZHOU Jianliang, et alg. A jetting flow rate design method for conductor installation through jetting in deepwater drilling[J]. Petroleum Drilling Techniques, 2016, 44(3): 21–26. doi: 10.11911/syztjs.201603004

    [36] 刘清友,秦松,毛良杰,等. 深水钻井隔水导管承载能力影响因素 分析[J]. 石油钻探技术,2019,47(5):49–56. doi: 10.11911/syztjs.2019099

    LIU Qingyou, QIN Song, MAO Liangjie, et al. An analysis of the factors affecting the load-bearing capacity of deep water drilling conductor[J]. Petroleum Drilling Tecniques, 2019, 47(5): 49–56. doi: 10.11911/syztjs.2019099

    [37] 刘书杰,杨进,周建良,等. 深水海底浅层喷射钻进过程中钻压与钻速关系[J]. 石油钻采工艺,2011,33(1):12–15.

    LIU Shujie, YANG Jin, ZHOU Jianliang, et al. Research on relationship between weight-on-bit and drilling rate during jetting drilling in sub-bottom deepwater[J]. Oil Drilling & Production Technology, 2011, 33(1): 12–15.

    [38] 汪顺文,杨进,严德,等. 深水表层导管喷射钻进机理研究[J]. 石油天然气学报,2012,34(8):157–160.

    WANG Shunwen, YANG Jin, YAN De, et al. Research of jetting drilling mechanism of surface conductor in deepwater[J]. Journal of Oil and Gas Technology, 2012, 34(8): 157–160.

    [39] 刘正礼,严德. 南海东部荔湾22–1–1超深水井钻井关键技术[J]. 石油钻探技术,2019,47(1):13–19.

    LIU Zhengli, YAN De. Key drilling techniques of Liwan22-1-1 ultra-deepwater well in east of South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 13–19.

    [40]

    ZHAO Xin, YIN Qishuai, YANG Jin, et al. Risk assessment of surface conductor jetting installation during deep-water drilling in sloping seabed[J]. Ocean Engineering, 2022, 266(Part 5): 113057

    [41] 吴涛,李列,孙金,等. 深水陆坡区井场海底稳定性评价:以南海松涛深水井场为例[J]. 工程地球物理学报,2021,18(6):828–839.

    WU Tao, LI Lie, SUN Jin, et al. Evaluation of submarine slope stability of drilling site in deepwater continental slope: a case study of Songtao drilling site in the South China Sea[J]. Chinese Journal of Engineering Geophysics, 2021, 18(6): 828–839.

    [42] 欧阳敏,吴涛,李列,等. 琼东南陆坡区复杂地形深水井场海底稳定性评估[J]. 中国海上油气,2020,32(4):179–189.

    OUYANG Min, WU Tao, LI Lie, et al. Seabed stability evaluation of deep water well site with complex topography in Qiongdongnan continental slope area[J]. China Offshore Oil and Gas, 2020, 32(4): 179–189.

    [43] 叶吉华,刘正礼,罗俊丰,等. 南海深水钻井井控技术难点及应对措施[J]. 石油钻采工艺,2015,37(1):139–142.

    YE Jihua, LIU Zhengli, LUO Junfeng, et al. Technical difficulties and countermeasures in well control of deepwater drilling in the South China Sea[J]. Oil Drilling & Production Technology, 2015, 37(1): 139–142.

    [44] 叶吉华,刘正礼,罗俊丰,等. 深水钻井井控技术[J]. 科技创新导报,2014,11(28):46.

    YE Jihua, LIU Zhengli, LUO Junfeng, et al. Deepwater drilling well control technology[J]. Science and Technology Innovation Herald, 2014, 11(28): 46.

    [45] 刘书杰,杨向前,郭华,等. 井控溢流快速判断方法研究[J]. 煤炭技术,2017,36(5):296–298.

    LIU Shujie, YANG Xiangqian, GUO Hua, et al. Research for judgment method of well control overflow[J]. Coal Technology, 2017, 36(5): 296–298.

    [46] 付建红. 深水钻井溢流监测与井控技术研究[D]. 成都: 西南石油大学, 2016.

    FU Jianhong. Kick detection and well control technology during deepwater drilling[D]. Chengdu: Southwest Petroleum University, 2016.

    [47]

    YIN Qishuai, YANG Jin, TYAGI M, et al. Field data analysis and risk assessment of gas kick during industrial deepwater drilling process based on supervised learning algorithm[J]. Process Safety and Environmental Protection, 2021, 146: 312–328. doi: 10.1016/j.psep.2020.08.012

    [48]

    YIN Qishuai, YANG Jin, TYAGI M, et al. Machine learning for deepwater drilling: gas-kick-alarm classification using pilot scale rig data with combined surface-riser-downhole monitoring[J]. SPE Journal, 26(4): 1773−1799.

    [49] 殷志明,张红生,周建良,等. 深水钻井井喷事故情景构建及应急能力评估[J]. 石油钻采工艺,2015,37(1):166–171.

    YIN Zhiming, ZHANG Hongsheng, ZHOU Jianliang, et al. Scenario design of blowout accidents in deepwater drilling and emergency capacity assessment[J]. Oil Drilling & Production Technology, 2015, 37(1): 166–171.

    [50] 姬辉,翟晓鹏,林宝霞,等. 救援井井眼轨迹设计切入角分析[J]. 断块油气田,2016,23(2):240–242. doi: 10.6056/dkyqt201602024

    JI Hui, ZHAI Xiaopeng, LIN Baoxia, et al. Analysis of entrance angle for relief well trajectory design[J]. Fault-Block Oil & Gas Field, 2016, 23(2): 240–242. doi: 10.6056/dkyqt201602024

    [51] 孙长利,苗典远,李允智,等. 深水救援井动态压井参数优化设计方法[J]. 中国海上油气,2020,32(4):131–139.

    SUN Changli, MIAO Dianyuan, LI Yunzhi, et al. Optimal design method for dynamic killing parameters of deep water rescue well[J]. China Offshore Oil and Gas, 2020, 32(4): 131–139.

    [52] 张帅. 救援井动态压井参数设计研究[D]. 青岛: 中国石油大学(华东), 2019.

    ZHANG Shuai. A study on dynamic kill of relief well[D]. Qingdao: China University of Petroleum(East China), 2019.

    [53] 赵维青,刘正礼,宋吉明,等. 深水救援井动态压井设计方法及应用[J]. 石油钻采工艺,2016,38(2):186–190.

    ZHAO Weiqing, LIU Zhengli, SONG Jiming, et al. Design method for dynamic well killing of deepwater relief well and its application[J]. Oil Drilling & Production Technology, 2016, 38(2): 186–190.

    [54] 郝希宁,王宇,党博,等. 救援井电磁探测定位方法及工具研究[J]. 石油钻探技术,2021,49(3):75–80. doi: 10.11911/syztjs.2021005

    HAO Xining, WANG Yu, DANG Bo, et al. Research on electromagnetic detection and positioning methods and tools for relief wells[J]. Petroleum Drilling Techniques, 2021, 49(3): 75–80. doi: 10.11911/syztjs.2021005

    [55] 董星亮,张崇,顾纯巍,等. 3 000 m水下应急封井装置下放过程平衡分析[J]. 中国海上油气,2020,32(5):114–119.

    DONG Xingliang, ZHAG Chong, GU Chunwei, et al. Balance analysis for landing of subsea capping stacks to a depth of 3 000 m[J]. China Offshore Oil and Gas, 2020, 32(5): 114–119.

    [56] 朱敬宇,陈国明,刘康,等. 应急封井装置导向下放系统结构动态响应特性研究[J]. 中国安全科学学报,2022,32(8):194–200. doi: 10.16265/j.cnki.issn1003-3033.2022.08.1678

    ZHU Jingyu, CHEN Guoming, LIU Kang, et al. Research on structural dynamic response characteristic of capping stack landed guiding system[J]. China Safety Science Journal, 2022, 32(8): 194–200. doi: 10.16265/j.cnki.issn1003-3033.2022.08.1678

    [57] 王茂刚. 深水水下应急封井装置下放安装技术研究[D]. 北京: 中国石油大学(北京), 2021.

    WANG Maogang. Research on down-installation technology of deep-water subsea capping stack[D]. Beijing: China University of Petroleum(Beijing), 2021.

    [58] 王宇,郝希宁,李朝玮. 水下应急封井装置概述[J]. 海洋工程装备与技术,2019,6(2):504–508.

    WANG Yu, HAO Xining, LI Chaowei. Overview of subsea capping stacks[J]. Ocean Engineering Equipment and Technology, 2019, 6(2): 504–508.

    [59] 苗典远, 李雪雄, 杨欣雨, 等. 水下应急封井器的现状与发展[J]. 海洋工程装备与技术, 2019, 6(增刊1): 181−185.

    MIAO Dianyuan, LI Xuexiong, YANG Xinyu, et al. Overview of current subsea capping stack and its development[J]. Ocean Engineering Equipment and Technology, 2019, 6(supplement1): 181−185.

    [60] 李迅科,殷志明,刘健,等. 深水钻井井喷失控水下应急封井回收系统[J]. 海洋工程装备与技术,2014,1(1):25–29.

    LI Xunke, YIN Zhiming, LIU Jian, et al. Marine well containment system for subsea blowout scenario of deepwater drilling[J]. Ocean Engineering Equipment and Technology, 2014, 1(1): 25–29.

    [61]

    XU Changhang, ZHANG Wuyang, WU Changwei, et al. An improved method of eddy current pulsed thermography to detect subsurface defects in glass fiber reinforced polymer composites[J]. Composite Structures, 2020, 242: 112145. doi: 10.1016/j.compstruct.2020.112145

    [62] 王朝晖,张来斌,辛若家,等. 声发射技术在管道泄漏检测中的应用[J]. 中国石油大学学报(自然科学版),2007,31(5):87–90.

    WANG Zhaohui, ZHANG Laibin, XIN Ruojia, et al. Application of acoustic emission technique in pipeline leakage detection[J]. Journal of China University of Petroleum(Edition of Natural Science), 2007, 31(5): 87–90.

    [63] 李皋,李泽,简旭, 等. 页岩膨胀应变及固井质量对套管变形的影响研究[J]. 特种油气藏,2021,28(3):139–143. doi: 10.3969/j.issn.1006-6535.2021.03.021

    LI Gao,LI Ze,JIAN Xu, et al. Study on the effect of shale expansion strain and cementing quality on casing deformation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 139–143. doi: 10.3969/j.issn.1006-6535.2021.03.021

    [64] 储胜利,张来斌,樊建春,等. 基于磨屑收集的套管磨损监测技术[J]. 天然气工业,2008,28(8):70–72.

    CHU Shengli, ZHANG Laibin, FANG Jianchun, et al. Research on monitoring technology for casing wear[J]. Natural Gas Industry, 2008, 28(8): 70–72.

    [65] 秦先勇,张来斌,王朝晖,等. 基于过程信息融合的管线泄漏诊断[J]. 中国石油大学学报(自然科学版),2008,32(4):82–86.

    QIN Xianyong, ZHANG Laibin, WANG Zhaohui, et al. Pipeline leak detection based on process information fusion[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(4): 82–86.

    [66]

    ZHAO Jianming, LI Wei, ZHAO Jianchao, et al. A novel ACFM probe with flexible sensor array for pipe cracks inspection[J]. IEEE Access, 2020, 8: 26904–26910.

    [67]

    ZHOU Wei, FAN Jianchun, NI Jinlu, et al. Variation of magnetic memory signals in fatigue crack initiation and propagation behavior[J]. Metals, 2019, 9(1):89.

    [68] 周威,樊建春,刘书杰,等. 隔水管焊缝疲劳损伤检测试验研究[J]. 石油机械,2020,48(1):70–76.

    ZHOU Wei, FAN Jianchun, LIU Shujie, et al. Experimental study on fatigue damage detection of drilling riser weld[J]. China Petroleum Machinery, 2020, 48(1): 70–76.

    [69] 董星亮. 深水钻井重大事故防控技术研究进展与展望[J]. 中国海上油气,2018,30(2):112–119. doi: 10.11935/j.issn.1673-1506.2018.02.016

    DONG Xinglaing. Research progress and prospect for serious accident prevention and control technology of deep water drilling[J]. China Offshore Oil and Gas, 2018, 30(2): 112–119. doi: 10.11935/j.issn.1673-1506.2018.02.016

    [70] 高德利, 王宴滨. 海洋深水钻井力学与控制技术若干研究进展[J]. 石油学报, 2019, 40(增刊2): 102−115.

    GAO Deli, WANG Yanbin. Some research progress in deepwater drilling mechanics and control technology[J]. Acta Petrolei Sinica, 2019, 40(supplement 2): 102−115.

    [71] 马洪刚,张来斌,樊建春. 作业条件危险性评价法在深水钻完井作业评价中的应用研究[J]. 中国安全生产科学技术,2011,7(9):89–92.

    MA Honggang, ZHANG Laibin, FAN Jianchun. Study on the application of LEC to the risk assessment of deep-water drilling and completion operations[J]. Journal of Safety Science and Technology, 2011, 7(9): 89–92.

    [72] 李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术,2022,50(2):1–8.

    LI Zhong. Progress and prospects of digitization and intelligentization of CNOOC’s oil and gas well engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1–8.

    [73] 殷志明, 刘书杰, 谭扬, 等. 基于机器学习的深水钻井大数据处理方法研究[J]. 海洋工程装备与技术, 2019, 6(增刊1): 446-453.

    YIN Zhiming, LIU Shujie, TAN Yang, et al. Research on outlier marking method of deepwater drilling big data in machine learning[J]. Ocean Engineering Equipment and Technology, 2019, 6(supplement1): 446-453.

  • 期刊类型引用(17)

    1. 王大勇,马红滨,李欣龙,熊超,史怀忠,黄中伟,赫文豪. 高压水射流辅助锥形PDC齿破碎花岗岩试验研究. 石油机械. 2024(07): 36-44 . 百度学术
    2. 王鸿远. 锥形与常规PDC齿混合布齿破岩机理研究及钻头研制. 石化技术. 2024(08): 389-391 . 百度学术
    3. 张文波,史怀忠,席传明,张楠,熊超,陈振良. 锥形PDC齿和常规PDC齿混合切削破岩试验研究. 石油机械. 2023(03): 33-39 . 百度学术
    4. 鲍伟伟,赵国辉,徐杨. 大港页岩油水平井优快钻井技术. 中国石油和化工标准与质量. 2023(12): 159-161 . 百度学术
    5. 傅新康,黄中伟,史怀忠,吴洪志,何森林,熊超,赫文豪. 锥形齿与平面齿切削碳酸盐岩特征对比分析. 石油机械. 2023(07): 59-67 . 百度学术
    6. 熊超,黄中伟,王立超,史怀忠,赫文豪,陈振良,李根生. 锥形聚晶金刚石复合片齿破岩特征与机制研究. 岩土力学. 2023(08): 2432-2444 . 百度学术
    7. 徐建飞,陈晖,邹德永,黄勇. 高造斜率定向CDE钻头设计与应用. 机械设计与制造工程. 2023(09): 117-120 . 百度学术
    8. 李彦操. PDC钻头齿的破岩机理和性能测试方法研究现状. 金刚石与磨料磨具工程. 2023(05): 553-567 . 百度学术
    9. 吴泽兵,席凯凯,赵海超,黄海,张文超,杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究. 石油钻探技术. 2022(02): 71-77 . 本站查看
    10. 刘伟吉,阳飞龙,祝效华,罗云旭,何灵. 异形PDC齿切削破岩提速机理研究. 中国机械工程. 2022(17): 2133-2141 . 百度学术
    11. 胡思成,管志川,路保平,梁德阳,呼怀刚,闫炎,陶兴华. 锥形齿旋冲及扭冲的破岩过程与破岩效率分析. 石油钻探技术. 2021(03): 87-93 . 本站查看
    12. 徐卫强,史怀忠,曹权,史杏杏,胡锡辉,熊超,陈晗. 锥形PDC齿破碎砾岩特性试验研究. 石油机械. 2021(09): 9-16 . 百度学术
    13. 麻地辉,薛娟,李毅锐. 水力结构增强型PDC钻头应用分析. 西部探矿工程. 2019(12): 64-65+74 . 百度学术
    14. 汪为涛. 非均质地层锥形辅助切削齿PDC钻头设计与试验. 石油钻探技术. 2018(02): 58-62 . 本站查看
    15. 杨顺辉. 新型多重复合切削钻头的研制. 石油机械. 2016(10): 21-24 . 百度学术
    16. 孙源秀,邹德永,郭玉龙,陈修平,易杨. 切削-犁削混合钻头设计及现场应用. 石油钻采工艺. 2016(01): 53-56 . 百度学术
    17. 孙源秀,邹德永,徐城凯,郭玉龙. 锥形聚晶金刚石复合片钻头(PDC)齿与常规PDC齿破岩效果对比试验. 科学技术与工程. 2015(36): 159-162 . 百度学术

    其他类型引用(15)

图(2)  /  表(2)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  180
  • PDF下载量:  123
  • 被引次数: 32
出版历程
  • 收稿日期:  2023-01-27
  • 修回日期:  2023-02-08
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回