Loading [MathJax]/jax/output/SVG/jax.js

非常规油气藏新一代体积压裂技术的几个关键问题探讨

蒋廷学

蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023, 51(4):184-191. DOI: 10.11911/syztjs.2023023
引用本文: 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023, 51(4):184-191. DOI: 10.11911/syztjs.2023023
JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs [J]. Petroleum Drilling Techniques,2023, 51(4):184-191. DOI: 10.11911/syztjs.2023023
Citation: JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs [J]. Petroleum Drilling Techniques,2023, 51(4):184-191. DOI: 10.11911/syztjs.2023023

非常规油气藏新一代体积压裂技术的几个关键问题探讨

基金项目: 国家自然科学基金企业创新发展联合基金项目“海相深层油气富集机理与关键工程技术基础研究”(编号:U19B6003-05)资助
详细信息
    作者简介:

    蒋廷学(1969—),男,江苏东海人,1991年毕业于石油大学(华东)采油工程专业,2007年获中国科学院渗流流体力学研究所流体力学专业博士学位,正高级工程师,中国石化集团公司首席专家,主要从事水力压裂理论及技术研究工作。系本刊编委。E-mail:jiangtx.sripe@sinopec.com。

  • 中图分类号: TE357.1

Discussion on Several Key Issues of the New-Generation Network Fracturing Technologies for Unconventional Reservoirs

  • 摘要:

    体积压裂技术是实现非常规油气藏高效开发的关键,围绕有效改造体积及单井控制EUR最大化的目标,密切割程度、加砂强度、暂堵级数及工艺参数不断强化,导致压裂作业综合成本越来越高。为此,开展了新一代体积压裂技术(立体缝网压裂技术)的研究与试验,压裂工艺逐渐发展到“适度密切割、多尺度裂缝强加砂、多级双暂堵和全程穿层”模式。为促进立体缝网压裂技术的发展与推广应用,对立体缝网的表征、压裂模式及参数界限的确定、“压裂–渗吸–增能–驱油”协同提高采收率的机制、一体化变黏度多功能压裂液的研制、石英砂替代陶粒的经济性分析及“设计–实施–后评估”循环迭代升级的闭环体系构建等关键问题进行了探讨,厘清了立体缝网压裂技术的概念、关键技术及提高采收率机理,对于非常规油气藏新一代压裂技术的快速发展、更好地满足非常规油气藏高效勘探开发需求,具有重要的借鉴和指导意义。

    Abstract:

    Network fracturing technologies are the key to the efficient development of unconventional reservoirs. The degree of tight spacing, the intensity of proppant injection, the number of temporary plugging stages, and operation parameters are constantly optimized to maximize the effective stimulated reservoir volume (ESRV) and single-well estimated ultimate recovery (EUR), ultimately adding to the increasingly high comprehensive costs of fracturing operations. For this reason, new-generation network fracturing technologies (namely, three-dimensional fracture network fracturing technologies) were investigated and tested. Regarding the development of the fracturing process, a mode of “moderate tight spacing, high-intensity proppant injection to multi-scale fractures, multi-stage dual temporary plugging, and whole-process layer-penetrating” was gradually ushered into practice. Several key issues were discussed to further the development, promotion, and application of three-dimensional fracture network fracturing technologies. These issues involved the characterization of three-dimensional fracture networks, the determination of the fracturing mode and parameter boundaries, the synergistic enhanced oil recovery (EOR) mechanism of “fracturing-imbibition-energy enhancement-oil displacement”, integrated multi-functional fracturing fluids, the analysis of the economic efficiency of replacing ceramsite with quartz sand, and the establishment of a closed-loop system upgraded by cyclic iteration of “design-implementation-post-frac evaluation”. In this way, the concepts, key technologies, and the EOR mechanism of the three-dimensional fracturing technologies were clarified. Important reference and guidance can be provided by this paper for the rapid development of new-generation fracturing technologies for unconventional oil reservoirs and better fulfillment of the requirements for efficient exploration and development of unconventional reservoirs.

  • 长庆油田陇东地区长7段页岩油储层埋深一般为1 600~2 200 m,渗透率0.07~0.22 mD,压力系数0.77~0.85,脆性指数 0.34~0.45[1]。长7段页岩油藏与北美页岩油藏具有相似性,但开发更具挑战,主要表现为:沉积环境是湖相沉积,非均质性更强,地层压力系数低,脆性指数低,天然裂缝相对不发育。前期该页岩油藏的水平井主体采用水力泵送桥塞分段体积压裂工艺,初期单井日产油量 10 t 左右,未达到预期效果。分析认为,水平井分段多簇压裂改造过程中,受储层物性、地应力、各向异性及水力裂缝簇间干扰等因素影响[2-5],各簇不能均匀开启,簇间进液不均,达不到均匀改造储层的目的。因此,需要开展精细化分段压裂技术研究,以实现精细分层、规模可控,从而解决水平井分段多簇压裂部分射孔簇压不开,或虽已压开但并未建立起有效驱替压差,导致有效期短、无法实现长期有效动用的问题。为此,长庆油田开展了单段单簇细分切割压裂技术研究,形成了页岩油水平井细分切割压裂技术,实现了储层均匀改造、缝控储量的目的。目前,该技术已在陇东地区10口页岩油水平井进行了现场应用,取得了显著的增产效果。

    利用软件模拟分析了多簇压裂和细分切割单段单簇压裂时的裂缝扩展情况,结果见图1(缝高、缝长固定,缝宽变化)。

    图  1  不同压裂方式下的裂缝扩展对比
    Figure  1.  Comparison of fracture propagation under different fracturing modes

    多簇压裂方式下,2簇压开缝长260.00 m,缝高92.00 m;3簇压开缝长210.00 m,缝高67.00 m。模拟可知,并非所有簇都能均匀开启,压窜邻井(井距400.00 m)的风险很高,压穿相邻含水层的风险也升高。现场常出现某井压裂造成邻井含水率迅速升至100%的情况,证实了普遍存在压窜。

    细分切割单段单簇压裂方式下,各裂缝长度为180.00 m,缝高52.00 m。模拟可知,该压裂方式可以确保储层各射孔位置均匀分布,能够保证每段均匀开启、充分改造,避免了压窜邻井的风险。

    模拟了长7段页岩油藏1口页岩油水平井在多簇合压和单簇单压下的裂缝形态,并采用软件预测了2种工艺下的采油指数、无阻流量(见表1)和产能(见图2)。

    表  1  多簇合压和单簇单压下的采油指数和无阻流量
    Table  1.  Productivity index and open flow capacity under multi-cluster fracturing and single-cluster fracturing
    序号压裂工艺采油指数/(m3·d–1·MPa–1无阻流量/(m3·d–1
    1多簇合压2.058 4632.93
    2单簇单压2.241 6535.86
    下载: 导出CSV 
    | 显示表格
    图  2  多簇合压和单簇单压下的产能预测曲线
    Figure  2.  Productivity prediction curves under multi-cluster fracturing and single-cluster fracturing

    表1图2可知,单簇单压下的采油指数和无阻流量明显高于多簇合压,且单簇单压较多簇合压的稳产时间更长。

    以实现“缝控储量最大化”为原则,利用压裂地质一体化设计方法,进行压裂改造方案优化,确定合理的储层改造工艺参数。

    以华HXX-X井为例进行压裂优化设计。该井的基本参数:储层有效厚度16.00 m,储层压力16 MPa,孔隙度10.1%,渗透率0.18 mD,含水饱和度40%,采用页岩油水平井细分切割压裂工艺,每段1簇。

    根据不同压裂段数下压裂后的累计产量、压裂成本及压裂净现值模拟计算结果(见图3),建议该井采用细分切割压裂的最优段数为38~42段。

    图  3  华HXX-X井不同压裂段数下压后效果的模拟结果
    Figure  3.  Simulation results of fracturing effect under different fracturing sections of Well Hua HXX-X

    以陇东地区华H34平台为例,根据测井解释的水平段储层物性参数,利用克里金空间插值方法,建立了华 H34 平台的非均匀地质模型[6](见图4)。

    图  4  华H34平台的非均匀地质模型
    Figure  4.  Heterogeneous geological model of the Platform Hua H34

    首先,分别计算页岩油储层的工程甜点指数(可压性)和地质甜点指数(含油性);然后,将二者结合得到综合甜点指数[7-8]。其中,工程甜点指数由岩性和岩石力学参数2部分构成,岩性参数为脆性矿物含量与全岩矿物含量的比值,岩石力学参数为归一化的弹性模量和泊松比的平均值;地质甜点指数为归一化的孔隙度、渗透率、含油饱和度及全烃值乘以权重系数之和;综合甜点指数为工程甜点指数和地质甜点指数乘以权重系数之和。

    根据华H34平台各井的测井数据,计算得到了井筒综合甜点指数,再利用空间插值获得了区域甜点分布情况,如图5所示(图例中的数据为该平台综合甜点指数)。

    图  5  华H34平台综合甜点分布
    Figure  5.  Sweet spot distribution on the Platform Hua H34

    基于综合甜点指数分布,设置最小缝间距,以压裂射孔位置总甜点指数最高为目标,避开套管接箍,优选射孔位置,结果见表2

    表  2  射孔位置优选结果
    Table  2.  Optimized perforating positions
    压裂
    段次
    射孔
    位置/
    m
    段间
    距/m
    综合
    甜点
    指数,%
    压裂
    段次
    射孔
    位置/
    m
    段间
    距/m
    综合
    甜点
    指数,%
    13 221.5055.9 132 741.9025.0066.2
    23 169.6051.9059.2142 711.1030.8079.1
    33 133.8035.8082.9152 670.4040.7077.5
    43 106.3027.5060.0162 643.3027.1072.0
    53 079.8026.5073.9172 598.1045.2064.1
    63 053.4026.4060.5182 568.6029.5073.0
    73 028.1025.3071.4192 540.6028.0064.5
    83 002.8025.3054.7202 510.9029.7070.0
    92 962.0040.8062.1212 480.9030.0087.7
    102 928.1033.9056.0222 455.1025.8066.5
    112 792.10136.00 63.1232 393.6061.5052.5
    122 766.9025.2080.8242 354.0039.6087.5
    下载: 导出CSV 
    | 显示表格

    表2可知,24段平均段间距37.70 m,平均综合甜点指数68.4%。

    陇东地区页岩油华H34平台平均井距308 m。在此条件下,模拟不同裂缝半长下的累计产油量,结果如图6所示。从图6可以看出,裂缝半长大于135 m之后产油量增幅明显减小。因此,将平均裂缝半长优化为135 m。至于具体每一段的裂缝半长的设计值,可根据实际井距进行调整。

    图  6  不同裂缝半长下的累计产量
    Figure  6.  Cumulative production with different half-lengths of fractures

    采用压裂地质一体化软件,模拟了相同液量、不同砂比(加砂量)下的裂缝参数及压后的产量,结果见表3。模拟采用的基本参数:储层压力16 MPa,渗透率0.10 mD,含水饱和度45%,井距300 m,水平段长度1 750 m,储层钻遇率80%,压裂43段,前置液占比40%。

    表  3  相同液量、不同砂比(加砂量)下的裂缝参数及压后的产量
    Table  3.  Fracture parameters and post-fracturing production with the same fluid rates but different proppant concentration (sand content)
    序号砂比,
    %
    每段液量/m3每段加砂量/m3支撑缝长/m导流能力/
    (mD·m)
    无因次
    导流能力
    第1年
    产量/t
    12162078.0131.30740.356.44 083.2
    21862066.8130.40644.549.44 053.0
    31562055.7129.50538.841.64 023.5
    41262044.6121.50454.337.43 773.6
    5 962033.4108.70381.835.13 226.3
    下载: 导出CSV 
    | 显示表格

    表3可以看出,砂比降低,裂缝导流能力下降,但导流能力对产量的影响较小,主要是因为基质渗透率很低、压裂段数很多,且产量不高,裂缝的导流能力能满足生产;但砂比降低到一定程度后,支撑缝长明显缩短,产量大幅度降低。经过综合对比确定最佳砂比为15%,每段最佳加砂量为55.7 m3

    模拟计算了40/70目和20/40目支撑剂(石英砂)以不同比例组合后的裂缝导流能力与压后的产量,结果见表4

    表  4  两种粒径支撑剂以不同比例组合后的裂缝导流能力与压后产量
    Table  4.  Fracture conductivity and post-fracturing production after the proppant with two particle sizes were combined in different proportions
    序号40/70目和20/40目
    支撑剂配比
    导流能力/
    (mD·m)
    无因次导流
    能力
    第1年
    产量/t
    11∶3533.425.85 263.1
    21∶2481.723.35 253.6
    31∶1405.919.65 243.4
    42∶1327.515.85 233.8
    53∶1276.513.45 179.2
    下载: 导出CSV 
    | 显示表格

    表4可知,40/70目和20/40目支撑剂组合中,随着40/70目支撑剂所占比例增大,裂缝导流能力降低,压后第1年的产量虽然有所降低但降低幅度非常小,这主要是因为导流能力已经可以满足流体流动的需求。不过,小粒径支撑剂沉降速度更小,液体能携带更远,支撑剂铺置剖面更均匀,有利于形成更长的支撑裂缝[9-11]。因此,综合考虑40/70目与20/40目支撑剂的最优组合比例为2∶1。

    模拟计算了不同尺寸连续油管在不同排量下的环空流速,结果见表5

    表  5  不同尺寸连续油管在不同排量下的环空流速
    Table  5.  Annular flow velocity of coiled tubings in different sizes under different flow rates
    排量/
    (m3·min–1
    不同尺寸连续油管对应环空流速/(m·s–1
    ϕ58.4 mmϕ50.8 mmϕ43.2 mm
    6.411.510.610.1
    6.611.910.910.4
    6.812.211.210.7
    7.012.611.611.0
    7.212.911.911.3
    7.413.312.211.7
    7.613.712.512.0
    7.814.012.912.3
    8.014.413.212.6
    8.214.713.512.9
    8.415.113.913.2
    下载: 导出CSV 
    | 显示表格

    根据表5中数据,参考石油天然气行业标准《石油钻采高压管汇的使用、维护、维修与检测》(SY/T 6270—2012)高压管汇液体流速不大于12.2 m/s的要求,并考虑连续油管在水平段会发生螺旋屈曲、增大冲蚀等情况,设计安全系数为1.20,将ϕ58.4 mm连续油管最大施工排量优化为5.6 m3/min。

    页岩油水平井细分切割压裂技术在长庆油田陇东地区10口井的长7段进行了应用,通过“精细分段、定点布缝”,达到了精准压裂、有效改造的效果,施工成功率100%,改造后增加了缝控储量,提高了单井产量。

    其中,XP237井组投产时间最长,生产31个月,应用井XP237-72井有效储层长度和改造强度均比同平台邻井略低。但从XP237平台改造和投产数据对比数据(见表6)及XP237平台产油量曲线(见图7)可以看出:目前XP237-72井日产油量14.4 t,比邻井平均日产油量高15.6%;累计产油量17 633.6 t,比邻井平均累计产油量高39.5%。而从XP237平台含水曲线(见图8)可以看出,XP237-72井的含水率明显低于同平台邻井。

    表  6  XP237平台各井改造和投产数据对比
    Table  6.  Comparison of stimulation and production data of the wells on the Platform XP237
    井别井号投产时间目前情况改造工艺段数簇数入地液量/
    m3
    加砂量/
    m3
    水平段
    长度/m
    油层钻遇
    率,%
    加砂强度/
    (m3·m–1)
    进液强度/
    (m3·m–1)
    油量/
    t
    含水率,%
    对比井XP 237-712018/02/18 8.8516.3桥塞分段316729 660.63 261.32 237.079.81.816.6
    XP 237-742018/08/0317.5325.8226226 418.53 321.41 876.085.32.116.5
    XP 237-752018/08/19 8.6233.7266728 779.03 102.71 682.379.32.321.6
    XP 237-762018/08/1914.7818.5185822 676.42 842.81 934.687.11.713.4
    应用井XP 237-722018/05/2114.3919.2细分切割404023 467.72 610.01 535.099.71.715.3
    下载: 导出CSV 
    | 显示表格
    图  7  XP237平台各井的产油量曲线
    Figure  7.  Oil production curves of the wells on the Platform XP237
    图  8  XP237平台各井的含水率曲线
    Figure  8.  Water cut curves of the wells on the Platform XP237

    1)针对长庆油田陇东地区页岩油储层脆性指数低、天然裂缝不发育、不易形成复杂缝网,以及采用分段多簇体积压裂时因受储层物性、地应力、各向异性及水力裂缝簇间干扰等因素影响导致簇间进液不均、达不到储层均匀改造目的的问题,研究了更具针对性的单段单簇细分切割压裂技术。

    2)利用压裂优化设计及监测评价技术一体化平台,建立了页岩油水平井非均质地质模型;基于甜点空间分布优化压裂段数,形成了细分切割压裂设计方法。同时,优化了加砂量、砂比和排量等压裂施工参数,实现了细分切割压裂的充分改造。

    3)长庆油田陇东地区页岩油水平井细分切割压裂技术已在现场应用10口井,采用“精细分段、定点布缝”压裂设计,借助连续油管底封拖动压裂工艺,对长7段储层进行了充分改造,改造效果明显优于邻井采用的常规压裂技术。

  • 表  1   2口井的立体缝网指数计算结果及其压后无阻流量

    Table  1   Calculated three-dimensional fracture network indexes and post-frac open flow rate of two wells

    井名水平段长/m排量/
    (m3·min−1
    单段液量/ m3V1/m3r1/mr2/mm1/条m2/条FCIFCI无阻流量/
    (104 m3·d−1
    A井1 00810~121331260.012.53.26180.1320.29316.74
    B井1 00312~141545312.612.72.68230.1450.43621.18
    注:V1为转向支裂缝及三级微裂缝中的压裂液体积;r1r2分别为转向支裂缝和三级微裂缝半长;m1m2分别为转向支裂缝和三级微裂缝数量。
    下载: 导出CSV
  • [1] 邹才能,丁云宏,卢拥军,等. “人工油气藏” 理论、技术及实践[J]. 石油勘探与开发,2017,44(1):144–154.

    ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144–154.

    [2] 曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报,2019,4(3):233–241.

    ZENG Yijin. Progress in engineering technologies for the development of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233–241.

    [3] 蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21. doi: 10.11911/syztjs.2021071

    JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21. doi: 10.11911/syztjs.2021071

    [4] 梁兴,管彬,李军龙,等. 山地浅层页岩气地质工程一体化高效压裂试气技术:以昭通国家级页岩气示范区太阳气田为例[J]. 天然气工业,2021,41(增刊1):124–132.

    LIANG Xing, GUAN Bin, LI Junlong, et al. Key technologies of shallow shale gas reservoir in mountainous area: taking Taiyang Gas Field in Zhaotong National Shale Gas Demonstration Area as an example[J]. Natural Gas Industry, 2021, 41(supplement1): 124–132.

    [5] 程垒明. 吉木萨尔凹陷页岩油水平井地质工程一体化三维压裂设计探索[J]. 石油地质与工程,2021,35(2):88–92. doi: 10.3969/j.issn.1673-8217.2021.02.018

    CHENG Leiming. Exploration of geological engineering integrated 3D fracturing design for horizontal wells in Jimsar shale oil reservoirs[J]. Petroleum Geology and Engineering, 2021, 35(2): 88–92. doi: 10.3969/j.issn.1673-8217.2021.02.018

    [6] 张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15. doi: 10.11911/syztjs.2022003

    ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15. doi: 10.11911/syztjs.2022003

    [7] 蒋廷学,卞晓冰,左罗,等. 非常规油气藏体积压裂全生命周期地质工程一体化技术[J]. 油气藏评价与开发,2021,11(3):297–304. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.004

    JIANG Tingxue, BIAN Xiaobing, ZUO Luo, et al. Whole lifecycle geology-engineering integration of volumetric fracturing technology in unconventional reservoir[J]. Reservoir Evaluation and Development, 2021, 11(3): 297–304. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.004

    [8] 卞晓冰,蒋廷学,贾长贵,等. 基于施工曲线的页岩气井压后评估新方法[J]. 天然气工业,2016,36(2):60–65.

    BIAN Xiaobing, JIANG Tingxue, JIA Changgui, et al. A new post-fracturing evaluation method for shale gas wells based on fracturing curves[J]. Natural Gas Industry, 2016, 36(2): 60–65.

    [9] 王倩雯. 页岩气井压后体积改造评估分析方法探讨[J]. 江汉石油职工大学学报,2020,33(1):34–37. doi: 10.3969/j.issn.1009-301X.2020.01.011

    WANG Qianwen. Discussion on evaluation-analysis method of volume modification after shale gas well fracturing[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2020, 33(1): 34–37. doi: 10.3969/j.issn.1009-301X.2020.01.011

    [10] 苏瑗,蒋廷学,卞晓冰,等. 一种页岩气井压后评估的远井可压指数评价方法[J]. 石油化工应用,2019,38(5):43–48. doi: 10.3969/j.issn.1673-5285.2019.05.008

    SU Yuan, JIANG Tingxue, BIAN Xiaobing, et al. The far-well fracability index method for shale well post-fracturing assess-ment[J]. Petrochemical Industry Application, 2019, 38(5): 43–48. doi: 10.3969/j.issn.1673-5285.2019.05.008

    [11] 赵文,张遂安,孙志宇,等. 基于G函数曲线分析的压后裂缝复杂性评估研究[J]. 科学技术与工程,2016,16(33):29–33. doi: 10.3969/j.issn.1671-1815.2016.33.006

    ZHAO Wen, ZHANG Suian, SUN Zhiyu, et al. Evaluative research for the fracture complexity after fracturing based on the G-function curves analysis[J]. Science Technology and Engineering, 2016, 16(33): 29–33. doi: 10.3969/j.issn.1671-1815.2016.33.006

    [12] 马俊修,兰正凯,王丽荣,等. 有效改造体积压裂效果评价方法及应用[J]. 特种油气藏,2021,28(1):126–133.

    MA Junxiu, LAN Zhengkai, WANG Lirong, et al. Evaluation method and application of ESRV fracturing effect[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 126–133.

    [13] 郑新权,何春明,杨能宇,等. 非常规油气藏体积压裂2.0工艺及发展建议[J]. 石油科技论坛,2022,41(3):1–9.

    ZHENG Xinquan, HE Chunming, YANG Nengyu, et al. Volumetric fracturing 2.0 process for unconventional oil and gas reservoirs and R & D suggestions[J]. Petroleum Science and Technology Forum, 2022, 41(3): 1–9.

    [14] 柴妮娜. 水平井多簇密切割增能体积压裂技术及应用[J]. 石化技术,2022,29(7):111–113.

    CHAI Nina. Multi cluster dense cutting energy increasing volume fracturing technology and its application in horizontal wells[J]. Petrochemical Industry Technology, 2022, 29(7): 111–113.

    [15] 李杉杉,孙虎,张冕,等. 长庆油田陇东地区页岩油水平井细分切割压裂技术[J]. 石油钻探技术,2021,49(4):92–98. doi: 10.11911/syztjs.2021080

    LI Shanshan, SUN Hu, ZHANG Mian, et al. Subdivision cutting fracturing technology for horizontal shale oil wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92–98. doi: 10.11911/syztjs.2021080

    [16] 于学亮,胥云,翁定为,等. 页岩油藏 “密切割” 体积改造产能影响因素分析[J]. 西南石油大学学报(自然科学版),2020,42(3):132–143.

    YU Xueliang, XU Yun, WENG Dingwei, et al. Factors influencing the productivity of the multi-fractured shale oil reservoir with tighter clusters[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(3): 132–143.

    [17] 侯冰,常智,武安安,等. 吉木萨尔凹陷页岩油密切割压裂多簇裂缝竞争扩展模拟[J]. 石油学报,2022,43(1):75–90. doi: 10.7623/syxb202201007

    HOU Bing, CHANG Zhi, WU Anan, et al. Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar Sag[J]. Acta Petrolei Sinica, 2022, 43(1): 75–90. doi: 10.7623/syxb202201007

    [18] 任佳伟,张先敏,王贤君,等. 致密砂岩油藏水平井密切割压裂改造参数优化[J]. 断块油气田,2021,28(6):859–864.

    REN Jiawei, ZHANG Xianmin, WANG Xianjun,et al. Optimization of parameters of close cutting fracturing for horizontal well in tight sandstone reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 859–864.

    [19] 赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075

    [20] 郑有成,范宇,雍锐,等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业,2019,39(10):76–81. doi: 10.3787/j.issn.1000-0976.2019.10.009

    ZHENG Youcheng, FAN Yu, YONG Rui, et al. A new fracturing technology of intensive stage + high-intensity proppant injection for shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10): 76–81. doi: 10.3787/j.issn.1000-0976.2019.10.009

    [21] 郑有成,赵志恒,曾波,等. 川南长宁区块页岩气高密度完井+高强度加砂压裂探索与实践[J]. 钻采工艺,2021,44(2):43–48. doi: 10.3969/J.ISSN.1006-768X.2021.02.11

    ZHENG Youcheng, ZHAO Zhiheng, ZENG Bo, et al. Exploration and practice on combination of high-density completion and high-intensity sand fracturing in shale gas horizontal well of Changning Block in southern Sichuan Basin[J]. Drilling & Production Technology, 2021, 44(2): 43–48. doi: 10.3969/J.ISSN.1006-768X.2021.02.11

    [22] 周福建,袁立山,刘雄飞,等. 暂堵转向压裂关键技术与进展[J]. 石油科学通报,2022,7(3):365–381. doi: 10.3969/j.issn.2096-1693.2022.03.032

    ZHOU Fujian, YUAN Lishan, LIU Xiongfei, et al. Advances and key techniques of temporary plugging and diverting fracturing[J]. Petroleum Science Bulletin, 2022, 7(3): 365–381. doi: 10.3969/j.issn.2096-1693.2022.03.032

    [23] 王纪伟,康玉柱,张殿伟,等. 非常规储层压裂暂堵剂应用进展[J]. 特种油气藏,2021,28(1):1–9.

    WANG Jiwei, KANG Yuzhu, ZHANG Dianwei, et al. Advances in the application of temporary plugging agents for racturing in unconventional reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 1–9.

    [24]

    ZHANG Ruxin, HOU Bing, TAN Peng, et al. Hydraulic fracture propagation behavior and diversion characteristic in shale formation by temporary plugging fracturing[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107063. doi: 10.1016/j.petrol.2020.107063

    [25] 肖勇军,卢家孝,陈智,等. 长宁区块页岩暂堵技术在体积压裂中的应用分析[J]. 中国石油和化工标准与质量,2022,42(19):195–198.

    XIAO Yongjun, LU Jiaxiao, CHEN Zhi, et al. Application analysis of shale temporary plugging technology in volume fracturing in Changning Block[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(19): 195–198.

    [26] 李彦超,张庆,沈建国,等. 页岩气藏长段多簇暂堵体积改造技术[J]. 天然气工业,2022,42(2):143–150.

    LI Yanchao, ZHANG Qing, SHEN Jianguo, et al. Volumetric stimulation technology of long-section multi-cluster temporary plugging in shale gas reservoirs[J]. Natural Gas Industry, 2022, 42(2): 143–150.

    [27] 胡东风,任岚,李真祥,等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业,2022,42(2):50–58.

    HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during fracture-opening temporary plugging fracturing of deep/ultra deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2): 50–58.

    [28] 刘彝,杨辉,吴佐浩. 强变形暂堵转向压裂技术研究及应用[J]. 钻井液与完井液,2022,39(1):114–120.

    LIU Yi, YANG Hui, WU Zuohao. Study and application of self-diverting fracturing fluid containing highly deformable temporary plugging agents[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 114–120.

    [29] 许建国,刘光玉,王艳玲. 致密储层缝内暂堵转向压裂工艺技术[J]. 石油钻采工艺,2021,43(3):374–378. doi: 10.13639/j.odpt.2021.03.015

    XU Jianguo, LIU Guangyu, WANG Yanling. Intrafracture temporary plugging and diversion fracturing technology suitable for tight reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 374–378. doi: 10.13639/j.odpt.2021.03.015

    [30] 魏娟明. 滑溜水-胶液一体化压裂液研究与应用[J]. 石油钻探技术,2022,50(3):112–118.

    WEI Juanming. Research and application of slick water and gel-liquid integrated fracturing fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112–118.

    [31] 樊平天,刘月田,冯辉,等. 致密油新一代驱油型滑溜水压裂液体系的研制与应用[J]. 断块油气田,2022,29(5):614–619.

    FAN Pingtian, LIU Yuetian, FENG Hui, et al. Research and application of a new generation of oil-displacing slick water fracturing fluid system for tight oil[J]. Fault-Block Oil & Gas Field, 2022, 29(5): 614–619.

    [32] 蒋廷学. 页岩油气水平井压裂裂缝复杂性指数研究及应用展望[J]. 石油钻探技术,2013,41(2):7–12.

    JIANG Tingxue. The fracture complexity index of horizontal wells in shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(2): 7–12.

    [33] 郑新权,王欣,张福祥,等. 国内石英砂支撑剂评价及砂源本地化研究进展与前景展望[J]. 中国石油勘探,2021,26(1):131–137.

    ZHENG Xinquan, WANG Xin, ZHANG Fuxiang, et al. Domestic sand proppant evaluation and research progress of sand source localization and its prospects[J]. China Petroleum Exploration, 2021, 26(1): 131–137.

    [34] 尹辉,韩先柱,李平,等. 石英砂替代技术研究及质量监管[J]. 石油工业技术监督,2022,38(10):9–14.

    YIN Hui, HAN Xianzhu, LI Ping, et al. Research on quartz sand substitution technology and quality supervision[J]. Technology Super-vision in Petroleum Industry, 2022, 38(10): 9–14.

    [35] 蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术,2022,50(3):1–9. doi: 10.11911/syztjs.2022065

    JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1–9. doi: 10.11911/syztjs.2022065

  • 期刊类型引用(8)

    1. 党永潮,梁晓伟,罗锦昌,张玉良,柴小勇,高赵伟,蒋勇鹏,焦众鑫. 国家示范工程陆相湖盆夹层型页岩油高效开发技术. 石油钻采工艺. 2024(02): 208-219 . 百度学术
    2. 寇园园,陈军斌,聂向荣,成程. 基于离散元方法的拉链式压裂效果影响因素分析. 石油钻采工艺. 2023(02): 211-222 . 百度学术
    3. 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨. 石油钻探技术. 2023(04): 184-191 . 本站查看
    4. 胡文瑞,魏漪,鲍敬伟. 鄂尔多斯盆地非常规油气开发技术与管理模式. 工程管理科技前沿. 2023(03): 1-10 . 百度学术
    5. 张冕,陶长州,左挺. 页岩油华H100平台储层改造关键技术及实践. 钻采工艺. 2023(06): 53-58 . 百度学术
    6. 刘尧文,卞晓冰,李双明,蒋廷学,张驰. 基于应力反演的页岩可压性评价方法. 石油钻探技术. 2022(01): 82-88 . 本站查看
    7. 张矿生,唐梅荣,陶亮,杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术. 石油钻探技术. 2022(02): 9-15 . 本站查看
    8. 蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势. 石油钻探技术. 2022(03): 1-9 . 本站查看

    其他类型引用(3)

表(1)
计量
  • 文章访问数:  527
  • HTML全文浏览量:  180
  • PDF下载量:  186
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-12-28
  • 修回日期:  2023-02-05
  • 录用日期:  2023-02-07
  • 网络出版日期:  2023-02-09
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回