Abstract:
The test scale of conventional electromagnetic hydraulic fracture monitoring methods is limited by the source distance of the instrument, and it is difficult to meet the requirements of longitudinal depth for monitoring in ultra-deep and low-permeability reservoirs. Therefore, based on the magnetotelluric monitoring theory and finite element algorithm, the forward model of vertical well hydraulic fracturing was established according to the actual production of oilfields. By using transitional boundary conditions, the influence of fracture shape and orientation parameter changes on magnetotelluric ground observation was simulated. The simulation results show that the impedance offset can reflect the change in fracture parameters in different ways, and it has an good degree of discrimination on the azimuth angles. The research shows that the magnetotelluric monitoring method is an effective means to monitor fracturing fractures. The research results can provide a reference for the subsequent related researches.