慢速地层偶极声波远探测井眼成像发射频率优选

孙小芳, 刘峰, 张聪慧, 孙志峰, 仇傲, 郭尚静

孙小芳,刘峰,张聪慧,等. 慢速地层偶极声波远探测井眼成像发射频率优选[J]. 石油钻探技术,2023, 51(1):98-105. DOI: 10.11911/syztjs.2023017
引用本文: 孙小芳,刘峰,张聪慧,等. 慢速地层偶极声波远探测井眼成像发射频率优选[J]. 石油钻探技术,2023, 51(1):98-105. DOI: 10.11911/syztjs.2023017
SUN Xiaofang, LIU Feng, ZHANG Conghui, et al. Transmission frequency optimization of borehole imaging for dipole acoustic remote detection of slow formations [J]. Petroleum Drilling Techniques,2023, 51(1):98-105. DOI: 10.11911/syztjs.2023017
Citation: SUN Xiaofang, LIU Feng, ZHANG Conghui, et al. Transmission frequency optimization of borehole imaging for dipole acoustic remote detection of slow formations [J]. Petroleum Drilling Techniques,2023, 51(1):98-105. DOI: 10.11911/syztjs.2023017

慢速地层偶极声波远探测井眼成像发射频率优选

详细信息
    作者简介:

    孙小芳(1979—),女,湖北荆州人,2003年毕业于江汉石油学院勘查技术与工程专业,2006年获中国地质大学(北京)地球探测与信息技术专业硕士学位,2010年获中国石油大学(北京)矿物学、岩石学、矿床学专业博士学位,工程师,主要从事声波测井相关研究工作。E-mail:sunxf8@cosl.com.cn

  • 中图分类号: P631.54

Emission Frequency Optimization of Borehole Imaging for Dipole Acoustic Remote Detection of Slow Formations

  • 摘要:

    为了提高慢速地层偶极声波远探测丛式井邻井井眼成像的图像质量,优选了偶极声源的最佳发射频率。根据慢速地层中偶极辐射声场理论,计算偶极纵波辐射波能流和辐射指向性,分析它们随频率的变化规律,结合试验井测试和现场应用情况,确定适合浅层慢速地层邻井成像的偶极声源最佳激发频率为2.4 kHz。研究结果表明,在测井资料质量良好的情况下,采用该激发频率处理得到的邻井远探测成像图清晰可靠,对图中反射体进行识别,能够确定邻井相对测量井的距离和方位,利用此结果可以指导浅层丛式井邻井防碰。研究结果为开发过程中丛式井邻井防碰提供了新的技术手段。

    Abstract:

    In order to improve the quality of adjacent borehole imaging of cluster wells by dipole acoustic remote detection of slow formations, the optimal emission frequency of the dipole sonic source was determined. According to the theory of dipole radiation sound field in slow formations, the energy flow of radiation wave and the radiation directivity of dipole P-wave were calculated, and their change law with the frequency variation were analyzed. In combination with the tests in experimental wells and field application, the optimal excitation frequency of the dipole sonic source suitable for adjacent well imaging in shallow and slow formations was determined as 2.4 kHz. The results showed that with good logging data quality, the remote detection imaging map of adjacent wells obtained and processed by the excitation frequency was clear and reliable, and identifying the reflectors in the map could determine the distance and azimuth of adjacent wells to logging wells. The results can guide the anti-collision of adjacent wells in shallow cluster wells and provide a new technical method for the anti-collision of adjacent wells in cluster wells within development phase.

  • 图  1   充液井孔中偶极声源向井旁地层中辐射声场的柱坐标系

    Figure  1.   A cylindrical coordinate system for the sound radiation field from the dipole sonic source in the liquid-filled borehole to its vicinity

    图  2   偶极声源在慢速地层中的辐射波能流

    Figure  2.   Energy flow of radiation wave of dipole sonic source in slow formations

    图  3   偶极纵波辐射能流峰值点处的偶极纵波辐射指向性

    Figure  3.   Radiation directivity of dipole P-wave at the peak point of energy flow of dipole P-wave radiation

    图  4   激发频率为2.4 kHz时不同滤波频率下的邻井远探测成像图

    Figure  4.   Imaging map of adjacent wells through remote detection with an excitation frequency of 2.4 kHz under different filtering frequencies

    图  5   激发频率为8.0 kHz时不同滤波频率下的邻井远探测成像图

    Figure  5.   Imaging map of adjacent wells through remote detection with an excitation frequency of 8.0 kHz under different filtering frequencies

    图  6   某区块井深250和380 m处的井位平面分布

    Figure  6.   Lay out of wellbores at well depth of 250 m and 380 m in a block

    图  7   w6井邻井远探测成像解释成果

    Figure  7.   Imaging results of adjacent wells of Well w6 through remote detection

    图  8   A1井邻井成像成果

    Figure  8.   Imaging results of adjacent wells of Well A1

    图  9   不同井段A1井井旁反射体方位示意

    Figure  9.   Orientation of reflector near Well A1 in different well sections

    表  1   远探测成像图中各反射体信息

    Table  1   Information of reflectors in remote detection imaging map

    反射体
    序号
    井段/m反射信息
    分布方位/(º)
    反射信息
    最强方位/(º)
    离测量井
    距离/m
    反射信息可能
    代表的邻井
    不同井深距测量井的距离/m
    250 m380 m
    1240~3380~120(180~300)60(240)2~15w1井6
    2240~3100~90(180~270)50(230)5~15w2井7
    3215~27060~120(240~300)90(270)4~13w7井或1井或w22井9
    4215~270110~180(290~360)150(330)7~15w3井11
    5320~460140~180(320~360)170(350)2~7w11井6
    6320~460140~180(320~360)180(360)7~15w3井9
    7350~43030~90(210~270)70(250)10~7w7井9
    8340~43080~150(260~330)90(270)7~101井9
    9340~36030~90(210~270)70(250)7~9w22井
    下载: 导出CSV
  • [1] 鲁港,常汉章,邢玉德,等. 邻井间最近距离扫描的快速算法[J]. 石油钻探技术,2007,35(3):23–26. doi: 10.3969/j.issn.1001-0890.2007.03.007

    LU Gang, CHANG Hanzhang, XING Yude, et al. Fast algorithm for scanning the nearest distance among adjacent wells[J]. Petroleum Drilling Techniques, 2007, 35(3): 23–26. doi: 10.3969/j.issn.1001-0890.2007.03.007

    [2] 刘刚,孙金,何宝生,等. 定向井防碰地面监测系统设计及现场试验[J]. 石油钻探技术,2012,40(1):7–11. doi: 10.3969/j.issn.1001-0890.2012.01.002

    LIU Gang, SUN Jin, HE Baosheng, et al. Design and field test of surface monitoring system for directional wells anti-collision[J]. Petroleum Drilling Techniques, 2012, 40(1): 7–11. doi: 10.3969/j.issn.1001-0890.2012.01.002

    [3] 刘永旺,管志川,史玉才,等. 井眼防碰技术存在的问题及主动防碰方法探讨[J]. 石油钻采工艺,2011,33(6):14–18. doi: 10.3969/j.issn.1000-7393.2011.06.004

    LIU Yongwang, GUAN Zhichuan, SHI Yucai, et al. Discussion on problems of wellbore anti-collision technology and active anti-collision methods[J]. Oil Drilling & Production Technology, 2011, 33(6): 14–18. doi: 10.3969/j.issn.1000-7393.2011.06.004

    [4] 窦新宇,梁华庆. 丛式井电磁防碰信号采集系统设计[J]. 仪表技术与传感器,2018(2):109–112. doi: 10.3969/j.issn.1002-1841.2018.02.027

    DOU Xinyu, LIANG Huaqing. Design of electromagnetic anti-collision signal acquisition system for cluster wells[J]. Instrument Technique and Sensor, 2018(2): 109–112. doi: 10.3969/j.issn.1002-1841.2018.02.027

    [5] 伊明,陈若铭,万教育,等. 丛式井、分支井钻井过程中的井眼防碰计算及应用[J]. 新疆石油科技,2006,16(3):1–8.

    YI Ming, CHEN Ruoming, WAN Jiaoyu, et al. Calculation and application of anti-collision during the process of drilling cluster wells and branch wells[J]. Xinjiang Petroleum Science & Technology, 2006, 16(3): 1–8.

    [6] 鲁港,邢玉德,吴俊林,等. 邻井防碰计算的快速扫描算法[J]. 石油地质与工程,2007,21(2):78–81. doi: 10.3969/j.issn.1673-8217.2007.02.023

    LU Gang, XING Yude, WU Junlin, et al. A fast anti-collision scanning algorithm of adjacent well[J]. Petroleum Geology and Engineering, 2007, 21(2): 78–81. doi: 10.3969/j.issn.1673-8217.2007.02.023

    [7] 牛德成,陈鸣,张聪慧,等. 低频偶极横波远探测测井在南海油田的应用[J]. 测井技术,2019,43(2):190–194. doi: 10.16489/j.issn.1004-1338.2019.02.015

    NIU Decheng, CHEN Ming, ZHANG Conghui, et al. Application of low-frequency dipole shear wave remote sensing technology in South China Sea Oilfield[J]. Well Logging Technology, 2019, 43(2): 190–194. doi: 10.16489/j.issn.1004-1338.2019.02.015

    [8] 张聪慧,祁晓,尚锁贵,等. 偶极横波远探测典型地质体解释模型研究及应用[J]. 应用声学,2017,36(5):401–408. doi: 10.11684/j.issn.1000-310X.2017.05.005

    ZHANG Conghui, QI Xiao, SHANG Suogui, et al. Application of forward modeling to typical geological characterization using dipole reflection imaging[J]. Journal of Applied Acoustics, 2017, 36(5): 401–408. doi: 10.11684/j.issn.1000-310X.2017.05.005

    [9] 郝仲田,孙小芳,刘西恩,等. 偶极横波远探测测井技术应用研究[J]. 地球物理学进展,2014,29(5):2172–2177. doi: 10.6038/pg20140527

    HAO Zhongtian, SUN Xiaofang, LIU Xien, et al. The application research of dipole acoustic reflection imaging technology[J]. Progress in Geophysics, 2014, 29(5): 2172–2177. doi: 10.6038/pg20140527

    [10] 庄春喜,燕菲,孙志峰,等. 偶极横波远探测测井数据处理及应用[J]. 测井技术,2014,38(3):330–336.

    ZHUANG Chunxi, YAN Fei, SUN Zhifeng, et al. Data processing and applications of dipole shear-wave imaging logging[J]. Well Logging Technology, 2014, 38(3): 330–336.

    [11]

    LEE S Q, CHEN Ming, GU Xihao, et al. Application of four-component dipole shear reflection imaging to interpret the geological structure around a deviated well[J]. Applied Geophysics, 2019, 16(3): 291–301. doi: 10.1007/s11770-019-0778-x

    [12]

    LI Zhen, QI Qiaomu, HEI Chuang, et al. Elastic-wave radiation, scattering, and reception of a dipole acoustic logging-while-drilling source in unconsolidated formations[J]. Frontiers in Earth Science, 2022, 10: 879345. doi: 10.3389/feart.2022.879345

    [13]

    LI Zhen, SU Yuanda, TANG Xiaoming, et al. A hybrid method to simulate elastic wave scattering of three-dimensional objects[J]. The Journal of the Acoustical Society of America, 2018, 144(4): EL268–EL274. doi: 10.1121/1.5059332

    [14] 牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022,50(6):21–27. doi: 10.11911/syztjs.2022111

    NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21–27. doi: 10.11911/syztjs.2022111

    [15] 唐晓明, 郑传汉. 定量测井声学[M]. 赵晓敏, 译. 北京: 石油工业出版社, 2004: 22-23.

    TANG Xiaoming, ZHENG Chuanhan. Quantitative borehole acoustic methods[M]. ZHAO Xiaomin, translated. Beijing: Petroleum Industry Press, 2004: 22-23.

    [16]

    TANG Xiaoming, CAO Jingji, WEI Zhoutuo. Shear-wave radiation, reception, and reciprocity of a borehole dipole source: with application to modeling of shear-wave reflection survey[J]. Geophysics, 2014, 79(2): T43–T50. doi: 10.1190/geo2013-0096.1

    [17] 曹景记,唐晓明,苏远大,等. 充液井中多极声源的辐射效率[J]. 地球物理学报,2016,59(2):757–766. doi: 10.6038/cjg20160233

    CAO Jingji, TANG Xiaoming, SU Yuanda, et al. Radiation efficiency of a multipole acoustic source in a fluid-filled borehole[J]. Chinese Journal of Geophysics, 2016, 59(2): 757–766. doi: 10.6038/cjg20160233

    [18] 唐晓明,魏周拓. 利用井中偶极声源远场辐射特性的远探测测井[J]. 地球物理学报,2012,55(8):2798–2807. doi: 10.6038/j.issn.0001-5733.2012.08.031

    TANG Xiaoming, WEI Zhoutuo. Single-well acoustic reflection imaging using far-field radiation characteristics of a borehole dipole source[J]. Chinese Journal of Geophysics, 2012, 55(8): 2798–2807. doi: 10.6038/j.issn.0001-5733.2012.08.031

图(9)  /  表(1)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  79
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 修回日期:  2022-12-04
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回