Emission Frequency Optimization of Borehole Imaging for Dipole Acoustic Remote Detection of Slow Formations
-
摘要:
为了提高慢速地层偶极声波远探测丛式井邻井井眼成像的图像质量,优选了偶极声源的最佳发射频率。根据慢速地层中偶极辐射声场理论,计算偶极纵波辐射波能流和辐射指向性,分析它们随频率的变化规律,结合试验井测试和现场应用情况,确定适合浅层慢速地层邻井成像的偶极声源最佳激发频率为2.4 kHz。研究结果表明,在测井资料质量良好的情况下,采用该激发频率处理得到的邻井远探测成像图清晰可靠,对图中反射体进行识别,能够确定邻井相对测量井的距离和方位,利用此结果可以指导浅层丛式井邻井防碰。研究结果为开发过程中丛式井邻井防碰提供了新的技术手段。
Abstract:In order to improve the quality of adjacent borehole imaging of cluster wells by dipole acoustic remote detection of slow formations, the optimal emission frequency of the dipole sonic source was determined. According to the theory of dipole radiation sound field in slow formations, the energy flow of radiation wave and the radiation directivity of dipole P-wave were calculated, and their change law with the frequency variation were analyzed. In combination with the tests in experimental wells and field application, the optimal excitation frequency of the dipole sonic source suitable for adjacent well imaging in shallow and slow formations was determined as 2.4 kHz. The results showed that with good logging data quality, the remote detection imaging map of adjacent wells obtained and processed by the excitation frequency was clear and reliable, and identifying the reflectors in the map could determine the distance and azimuth of adjacent wells to logging wells. The results can guide the anti-collision of adjacent wells in shallow cluster wells and provide a new technical method for the anti-collision of adjacent wells in cluster wells within development phase.
-
-
表 1 远探测成像图中各反射体信息
Table 1 Information of reflectors in remote detection imaging map
反射体
序号井段/m 反射信息
分布方位/(º)反射信息
最强方位/(º)离测量井
距离/m反射信息可能
代表的邻井不同井深距测量井的距离/m 250 m 380 m 1 240~338 0~120(180~300) 60(240) 2~15 w1井 6 2 240~310 0~90(180~270) 50(230) 5~15 w2井 7 3 215~270 60~120(240~300) 90(270) 4~13 w7井或1井或w22井 9 4 215~270 110~180(290~360) 150(330) 7~15 w3井 11 5 320~460 140~180(320~360) 170(350) 2~7 w11井 6 6 320~460 140~180(320~360) 180(360) 7~15 w3井 9 7 350~430 30~90(210~270) 70(250) 10~7 w7井 9 8 340~430 80~150(260~330) 90(270) 7~10 1井 9 9 340~360 30~90(210~270) 70(250) 7~9 w22井 -
[1] 鲁港,常汉章,邢玉德,等. 邻井间最近距离扫描的快速算法[J]. 石油钻探技术,2007,35(3):23–26. doi: 10.3969/j.issn.1001-0890.2007.03.007 LU Gang, CHANG Hanzhang, XING Yude, et al. Fast algorithm for scanning the nearest distance among adjacent wells[J]. Petroleum Drilling Techniques, 2007, 35(3): 23–26. doi: 10.3969/j.issn.1001-0890.2007.03.007
[2] 刘刚,孙金,何宝生,等. 定向井防碰地面监测系统设计及现场试验[J]. 石油钻探技术,2012,40(1):7–11. doi: 10.3969/j.issn.1001-0890.2012.01.002 LIU Gang, SUN Jin, HE Baosheng, et al. Design and field test of surface monitoring system for directional wells anti-collision[J]. Petroleum Drilling Techniques, 2012, 40(1): 7–11. doi: 10.3969/j.issn.1001-0890.2012.01.002
[3] 刘永旺,管志川,史玉才,等. 井眼防碰技术存在的问题及主动防碰方法探讨[J]. 石油钻采工艺,2011,33(6):14–18. doi: 10.3969/j.issn.1000-7393.2011.06.004 LIU Yongwang, GUAN Zhichuan, SHI Yucai, et al. Discussion on problems of wellbore anti-collision technology and active anti-collision methods[J]. Oil Drilling & Production Technology, 2011, 33(6): 14–18. doi: 10.3969/j.issn.1000-7393.2011.06.004
[4] 窦新宇,梁华庆. 丛式井电磁防碰信号采集系统设计[J]. 仪表技术与传感器,2018(2):109–112. doi: 10.3969/j.issn.1002-1841.2018.02.027 DOU Xinyu, LIANG Huaqing. Design of electromagnetic anti-collision signal acquisition system for cluster wells[J]. Instrument Technique and Sensor, 2018(2): 109–112. doi: 10.3969/j.issn.1002-1841.2018.02.027
[5] 伊明,陈若铭,万教育,等. 丛式井、分支井钻井过程中的井眼防碰计算及应用[J]. 新疆石油科技,2006,16(3):1–8. YI Ming, CHEN Ruoming, WAN Jiaoyu, et al. Calculation and application of anti-collision during the process of drilling cluster wells and branch wells[J]. Xinjiang Petroleum Science & Technology, 2006, 16(3): 1–8.
[6] 鲁港,邢玉德,吴俊林,等. 邻井防碰计算的快速扫描算法[J]. 石油地质与工程,2007,21(2):78–81. doi: 10.3969/j.issn.1673-8217.2007.02.023 LU Gang, XING Yude, WU Junlin, et al. A fast anti-collision scanning algorithm of adjacent well[J]. Petroleum Geology and Engineering, 2007, 21(2): 78–81. doi: 10.3969/j.issn.1673-8217.2007.02.023
[7] 牛德成,陈鸣,张聪慧,等. 低频偶极横波远探测测井在南海油田的应用[J]. 测井技术,2019,43(2):190–194. doi: 10.16489/j.issn.1004-1338.2019.02.015 NIU Decheng, CHEN Ming, ZHANG Conghui, et al. Application of low-frequency dipole shear wave remote sensing technology in South China Sea Oilfield[J]. Well Logging Technology, 2019, 43(2): 190–194. doi: 10.16489/j.issn.1004-1338.2019.02.015
[8] 张聪慧,祁晓,尚锁贵,等. 偶极横波远探测典型地质体解释模型研究及应用[J]. 应用声学,2017,36(5):401–408. doi: 10.11684/j.issn.1000-310X.2017.05.005 ZHANG Conghui, QI Xiao, SHANG Suogui, et al. Application of forward modeling to typical geological characterization using dipole reflection imaging[J]. Journal of Applied Acoustics, 2017, 36(5): 401–408. doi: 10.11684/j.issn.1000-310X.2017.05.005
[9] 郝仲田,孙小芳,刘西恩,等. 偶极横波远探测测井技术应用研究[J]. 地球物理学进展,2014,29(5):2172–2177. doi: 10.6038/pg20140527 HAO Zhongtian, SUN Xiaofang, LIU Xien, et al. The application research of dipole acoustic reflection imaging technology[J]. Progress in Geophysics, 2014, 29(5): 2172–2177. doi: 10.6038/pg20140527
[10] 庄春喜,燕菲,孙志峰,等. 偶极横波远探测测井数据处理及应用[J]. 测井技术,2014,38(3):330–336. ZHUANG Chunxi, YAN Fei, SUN Zhifeng, et al. Data processing and applications of dipole shear-wave imaging logging[J]. Well Logging Technology, 2014, 38(3): 330–336.
[11] LEE S Q, CHEN Ming, GU Xihao, et al. Application of four-component dipole shear reflection imaging to interpret the geological structure around a deviated well[J]. Applied Geophysics, 2019, 16(3): 291–301. doi: 10.1007/s11770-019-0778-x
[12] LI Zhen, QI Qiaomu, HEI Chuang, et al. Elastic-wave radiation, scattering, and reception of a dipole acoustic logging-while-drilling source in unconsolidated formations[J]. Frontiers in Earth Science, 2022, 10: 879345. doi: 10.3389/feart.2022.879345
[13] LI Zhen, SU Yuanda, TANG Xiaoming, et al. A hybrid method to simulate elastic wave scattering of three-dimensional objects[J]. The Journal of the Acoustical Society of America, 2018, 144(4): EL268–EL274. doi: 10.1121/1.5059332
[14] 牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022,50(6):21–27. doi: 10.11911/syztjs.2022111 NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21–27. doi: 10.11911/syztjs.2022111
[15] 唐晓明, 郑传汉. 定量测井声学[M]. 赵晓敏, 译. 北京: 石油工业出版社, 2004: 22-23. TANG Xiaoming, ZHENG Chuanhan. Quantitative borehole acoustic methods[M]. ZHAO Xiaomin, translated. Beijing: Petroleum Industry Press, 2004: 22-23.
[16] TANG Xiaoming, CAO Jingji, WEI Zhoutuo. Shear-wave radiation, reception, and reciprocity of a borehole dipole source: with application to modeling of shear-wave reflection survey[J]. Geophysics, 2014, 79(2): T43–T50. doi: 10.1190/geo2013-0096.1
[17] 曹景记,唐晓明,苏远大,等. 充液井中多极声源的辐射效率[J]. 地球物理学报,2016,59(2):757–766. doi: 10.6038/cjg20160233 CAO Jingji, TANG Xiaoming, SU Yuanda, et al. Radiation efficiency of a multipole acoustic source in a fluid-filled borehole[J]. Chinese Journal of Geophysics, 2016, 59(2): 757–766. doi: 10.6038/cjg20160233
[18] 唐晓明,魏周拓. 利用井中偶极声源远场辐射特性的远探测测井[J]. 地球物理学报,2012,55(8):2798–2807. doi: 10.6038/j.issn.0001-5733.2012.08.031 TANG Xiaoming, WEI Zhoutuo. Single-well acoustic reflection imaging using far-field radiation characteristics of a borehole dipole source[J]. Chinese Journal of Geophysics, 2012, 55(8): 2798–2807. doi: 10.6038/j.issn.0001-5733.2012.08.031