Development and Application of HTHP Gas Seal Test Packer
-
摘要:
国内测试封隔器的机械性能不稳定、作业失败率较高,无法满足超深高温高压油气井的测试工作。为此,采用水力锚与下卡瓦实现双向锚定,“J”形槽结构实现机械式可重复座封、可回收等功能,设计旁通孔以便在解封时平衡胶筒上下压差、达到保护胶筒效果,研制了高温高压气密封测试封隔器。该测试封隔器胶筒设计为三胶筒结构,选用FKM材料以提高胶筒性能。采用API 19TT标准模拟入井、关井、开井、酸压等全过程复杂工序,实现7次压力反转,耐温204 ℃、耐压105 MPa,试验最大绝对压力140 MPa,达到V1-TP气密封等级。该测试封隔器在1口超深井中进行了现场试验,坐封位置7300 m,一次坐封成功率100%。该封隔器的成功研制,打破了国外地层测试封隔器的技术垄断,有效降低了测试成本,为国内高端工具的研发提供了借鉴。
Abstract:Test packers in China have unstable mechanical performance and high failure rate during operation, which thus fail to test ultra-deep, high-temperature, and high-pressure (HTHP) oil and gas wells. Therefore, in this paper, a hydraulic anchor and lower slip were adopted to realize bidirectional anchoring, and a J-shaped slot structure was employed to realize the mechanical repeatable setting, recycling, and other functions. The bypass hole was designed to balance the upper and lower pressure difference of the packer element during unsealing, so as to protect the element. As a result, an HTHP gas seal test packer was developed. The packer was designed with three elements, and FKM materials were optimized to improve the performance of the element. In the experiment, the API 19TT standard was adopted to simulate the whole process of complicated processes such as run-in-hole (RIH), shut-in pressure survey, and flowing pressure and acid fracturing measuring during well opening, so as to realize seven pressure reversals, with an experimental temperature of 204 °C and pressure of 105 MPa, as well as maximum absolute pressure of 140 MPa, reaching V1-TP gas seal grade. The packer was tested in one ultra-deep well. The setting position was 7300 m, and the one-time setting success rate was 100%. The successful development breaks the monopoly of formation test packer technologies in other countries, reduces test costs, and provides a reference for developing high-end tools in China.
-
Keywords:
- HTHP /
- test packer /
- gas seal test /
- bidirectional anchoring
-
-
表 1 螺旋压缩弹簧样件试验数据
Table 1 Test data of spiral compression spring sample
弹簧型号 编号 试验前
高度/mm压缩后
高度/mm温度/
℃试验后
高度/mm高度变
化/mm1号
(抽检5)1 28.57 13.2 210 28.44 0.13 2 28.70 28.52 0.18 3 28.18 27.61 0.57 4 28.04 27.62 0.42 5 28.07 27.42 0.65 2号
(抽检5)1 28.15 13.2 210 28.05 0.10 2 28.56 28.42 0.14 3 28.22 28.17 0.05 4 28.32 28.23 0.09 5 28.44 28.35 0.09 表 2 胶筒材料性能参数
Table 2 Performance parameters of rubber element materials
参数 外界条件 材料 端胶筒 中胶筒 硬度/IRHD 室温 90~95 80~85 抗拉强度/MPa 21.8 31.1 断裂伸长率,% 48 224 撕裂强度/(N·mm−1) 52 31 体积变化率,% 204 ℃下,采用IRM903
高温试验油浸泡24 h3 2 张力变化率,% −7 −12 延伸变化率,% 8 −5 表 3 胶筒现场试验前后参数对比
Table 3 Comparison of parameters before and after field test of rubber element
胶筒 外径/mm 内径/mm 高度/mm 试验前 试验后 变化量 试验前 试验后 变化量 试验前 试验后 变化量 上胶筒 160.5 165.0 4.5 105.5 107.3 1.8 44.5 42.7 −1.8 中胶筒 160.5 162.4 1.9 105.0 106.0 1.0 70.0 67.5 −2.5 下胶筒 160.5 164.6 4.1 105.5 106.4 0.9 44.5 43.4 −1.1 -
[1] 邓波,陆正元,刘奇林,等. 双鱼石超深高温高压气藏偏差因子计算方法及早期储量预测[J]. 特种油气藏,2022,29(1):73–79. DENG Bo, LU Zhengyuan, LIU Qilin, et al. Calculation method of deviation factor and early reserve prediction of Shuangyushi ultra-deep gas reservoirs with high temperature and pressure[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 73–79.
[2] 王克林,刘洪涛,何文,等. 库车山前高温高压气井完井封隔器失效控制措施[J]. 石油钻探技术,2021,49(2):61–66. doi: 10.11911/syztjs.2020128 WANG Kelin, LIU Hongtao, HE Wen, et al. Failure control of completion packer in the high temperature and high pressure gas well of Kuqa piedmont structure[J]. Petroleum Drilling Techniques, 2021, 49(2): 61–66. doi: 10.11911/syztjs.2020128
[3] 王耀稼,王再兴,沈黎阳,等. 国内深井超深井钻井技术现状及发展趋势[J]. 石化技术,2016,23(2):52. WANG Yaojia, WANG Zaixing, SHEN Liyang, et al. Domestic deep and ultra-deep drilling technology status and development trend[J]. Petrochemical Industry Technology, 2016, 23(2): 52.
[4] 张立新,沈泽俊,李益良,等. 我国封隔器技术的发展与应用[J]. 石油机械,2007,35(8):58–60. ZHANG Lixin, SHEN Zejun, LI Yiliang, et al. Development and application of homemade packers[J]. China Petroleum Machinery, 2007, 35(8): 58–60.
[5] 窦益华,许爱荣,张福祥,等. 高温高压深井试油完井问题综述[J]. 石油机械,2008,36(9):140–142. DOU Yihua, XU Airong, ZHANG Fuxiang, et al. Remarks on problems with formation testing and well completion of high-pressure and high-temperature deep holes[J]. China Petroleum Machinery, 2008, 36(9): 140–142.
[6] 刘洪涛,黎丽丽,吴军,等. 库车山前高温高压气井测试管柱优化配置与应用[J]. 钻采工艺,2016,39(5):42–45. doi: 10.3969/J.ISSN.1006-768X.2016.05.14 LIU Hongtao, LI Lili, WU Jun, et al. Optimum configuration and application of well testing string for ultra-deep HTHP gas wells in Kuqa, Tarim[J]. Drilling & Production Technology, 2016, 39(5): 42–45. doi: 10.3969/J.ISSN.1006-768X.2016.05.14
[7] 李维,郑有成,常洪渠,等. 新型压缩式耐高温管外封隔器高温力学性能分析[J]. 钻采工艺,2011,34(6):63–64. LI Wei, ZHENG Youcheng, CHANG Hongqu, et al. High temperature mechanics analysis on modern compression thermal external casing packer[J]. Drilling & Production Technology, 2011, 34(6): 63–64.
[8] 王海兵,王新强,周胤男,等. 柴达木盆地深井五阀一封地层测试工艺[J]. 油气井测试,2022,31(5):23–27. doi: 10.19680/j.cnki.1004-4388.2022.05.005 WANG Haibing, WANG Xinqiang, ZHOU Yinnan, et al. Formation testing technology with five valves and one packer for deep wells in Qaidam Basin[J]. Well Testing, 2022, 31(5): 23–27. doi: 10.19680/j.cnki.1004-4388.2022.05.005
[9] 崔龙兵,樊凌云,邹伟,等. 顺北油田超深井可回收式套管封隔器失效因素分析及改进对策[J]. 油气井测试,2022,31(1):22–26. CUI Longbing, FAN Lingyun, ZOU Wei, et al. Failure factor analysis and improvement countermeasures of recyclable casing packer in ultra-deep wells in Shunbei Oilfield[J]. Well Testing, 2022, 31(1): 22–26.
[10] 刘红磊,陈作,周林波,等. 套管封隔器分段压裂管柱遇卡原因分析及解决方案[J]. 石油钻探技术,2021,49(2):102–106. LIU Honglei, CHEN Zuo, ZHOU Linbo, et al. The analysis and solution of sticking in a staged horizontal well fracturing with a casing packer[J]. Petroleum Drilling Techniques, 2021, 49(2): 102–106.
[11] 陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10. CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.
[12] 黄世财,单锋,冯辉,等. 超高温可回收式液压封隔器的研制和推广应用[J]. 钻采工艺,2016,39(1):86–88. HUANG Shicai, SHAN Feng, FENG Hui, et al. Development and application of domestic ultra-high temperature hydraulic retrievable packer[J]. Drilling & Production Technology, 2016, 39(1): 86–88.
[13] 庞振力,刘孝强,季鹏,等. 139.7 mm套管高温高压测试封隔器研制[J]. 油气井测试,2021,30(6):22–27. PANG Zhenli, LIU Xiaoqiang, JI Peng, et al. Development of high temperature and high pressure testing packer for casing with diameter of 139.7 mm[J]. Well Testing, 2021, 30(6): 22–27.
[14] 刘阳. 高温深层碳酸盐岩裸眼酸压完井封隔器研制与现场试验[J]. 石油钻探技术,2020,48(6):76–81. LIU Yang. The development and field testing of a high-temperature deep-layer open hole packer for acid fracturing completion in deep carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(6): 76–81.
[15] 刘练,张佳,王峰,等. 高温高压裸眼封隔器的改进及应用[J]. 钻采工艺,2012,35(5):77–79. LIU Lian, ZHANG Jia, WANG Feng, et al. Improvement and application of HTHP open hole packer in Tahe Oilfield[J]. Drilling & Production Technology, 2012, 35(5): 77–79.
[16] 梁文龙,薛占峰,马兰荣. 可解挂双向锚定悬挂封隔器关键技术[J]. 石油钻探技术,2019,47(4):59–63. LIANG Wenlong, XUE Zhanfeng, MA Lanrong. Key technologies for a detachable bi-directional anchoring suspension packer[J]. Petroleum Drilling Techniques, 2019, 47(4): 59–63.
[17] 段风海,李振,侯承勋,等. 耐高温高压封隔器胶筒性能研究[J]. 石油矿场机械,2020,49(2):66–70. DUAN Fenghai, LI Zhen, HOU Chengxun, et al. Study on the properties of high temperature and high pressure packer cartridge[J]. Oil Field Equipment, 2020, 49(2): 66–70.
[18] 万小勇,李林涛,黄传艳,等. 可取式液压封隔器耐高温胶筒优选与试验研究[J]. 石油机械,2018,46(12):88–93. WAN Xiaoyong, LI Lintao, HUANG Chuanyan, et al. Selection and experimental study of high temperature rubber for retrievable hydraulic packer[J]. China Petroleum Machinery, 2018, 46(12): 88–93.
[19] 张劲,李炜,张士诚. 封隔器超弹性胶筒力学性能的试验研究[J]. 机械工程学报,2011,47(8):71–76. doi: 10.3901/JME.2011.08.071 ZHANG Jin, LI Wei, ZHANG Shicheng. Experimental study on mechanics properties of rubber for packer sleeve[J]. Journal of Mechanical Engineering, 2011, 47(8): 71–76. doi: 10.3901/JME.2011.08.071
[20] API. Downhole equipment packers and bridge: API 11D1 − 2002[S]. Washington, D. C. : American Petroleum Institute, 2002.
[21] API. Specification for downhole well test tools and related equipment: API SPEC 19TT: 2016[S]. Washington, D. C. : American Petroleum Institute, 2016.
-
期刊类型引用(25)
1. 胡宏涛,管震,张宝权,赖刚,邹卓峰,曾杰. 基于实时数据的钻井KPI自动分析研究. 中国设备工程. 2024(24): 76-79 . 百度学术
2. 付群超,曾烃详,陈沛,钟鹏,王瑞科,杜坤. 基于随机森林回归模型的钻井作业周期预测. 录井工程. 2024(04): 39-47 . 百度学术
3. 王学强,樊建春,杨哲,罗双平,徐志凯,蔡正伟,熊毅. 树增强型贝叶斯模型提升溢流预警时间提前量. 石油钻采工艺. 2024(04): 413-428 . 百度学术
4. 晏琰,段慕白,黄浩. 基于趋势线法的钻井风险预警技术研究. 钻采工艺. 2023(02): 170-174 . 百度学术
5. 何淼,陈欢,张党生,许明标,陈鑫. 基于深度自编码器的钻井工况智能识别研究. 长江大学学报(自然科学版). 2023(03): 84-93 . 百度学术
6. 梅舜豪. 基于人工智能的钻井工程异常预警系统研究及应用. 石油化工自动化. 2023(04): 59-63 . 百度学术
7. 张菲菲,崔亚辉,于琛,张同颖,陈俊,颜寒. 基于机器学习的钻井工况识别技术现状及发展. 长江大学学报(自然科学版). 2023(04): 53-65+143 . 百度学术
8. 张禾,池紫欣. 基于BSMOTE-SVM算法的溢流风险评价. 控制工程. 2023(12): 2173-2178 . 百度学术
9. 夏文鹤,赵宗旭,李皋,李永杰,李宬晓,陈向东. 基于非线性分类网络的气体钻井风险智能识别方法. 信息与控制. 2023(04): 455-465 . 百度学术
10. 毛光黔,宋先知,丁燕,崔猛,刘雨龙,祝兆鹏. 基于梯度提升决策树算法的钻井工况识别方法. 石油钻采工艺. 2023(05): 532-539 . 百度学术
11. 王海涛,王建华,邱晨,毛金涛,李辉. 基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法. 石油钻采工艺. 2023(05): 540-547+554 . 百度学术
12. Wen-He Xia,Zong-Xu Zhao,Cheng-Xiao Li,Gao Li,Yong-Jie Li,Xing Ding,Xiang-Dong Chen. Intelligent risk identification of gas drilling based on nonlinear classification network. Petroleum Science. 2023(05): 3074-3084 . 必应学术
13. Ying Qiao,Hong-Min Xu,Wen-Jun Zhou,Bo Peng,Bin Hu,Xiao Guo. A BiGRU joint optimized attention network for recognition of drilling conditions. Petroleum Science. 2023(06): 3624-3637 . 必应学术
14. 韩玉娇. 基于AdaBoost机器学习算法的大牛地气田储层流体智能识别. 石油钻探技术. 2022(01): 112-118 . 本站查看
15. 胡万俊,夏文鹤,李永杰,蒋俊,李皋,陈一健. 气体钻井随钻安全风险智能识别方法. 石油勘探与开发. 2022(02): 377-384 . 百度学术
16. 刘胜娃,曹湘华. 基于决策树的钻井工况智能识别方法. 新型工业化. 2022(01): 28-30 . 百度学术
17. HU Wanjun,XIA Wenhe,LI Yongjie,JIANG Jun,LI Gao,CHEN Yijian. An intelligent identification method of safety risk while drilling in gas drilling. Petroleum Exploration and Development. 2022(02): 428-437 . 必应学术
18. 王钰豪,郝家胜,张帆,魏强,彭知南,段慕白. 钻井溢流风险的自适应LSTM预警方法. 控制理论与应用. 2022(03): 441-448 . 百度学术
19. 殷启帅,杨进,曹博涵,龙洋,陈柯锦,范梓伊,贺馨悦. 基于长短期记忆神经网络的深水钻井工况实时智能判别模型. 石油钻采工艺. 2022(01): 97-104 . 百度学术
20. 胡志强,杨进,王磊,侯绪田,张桢翔,姜萌磊. 钻井工况智能识别与时效分析技术. 石油钻采工艺. 2022(02): 241-246 . 百度学术
21. 赵春兰,屈瑶,王兵,范翔宇,赵鹏斐,李屹,何婷. 一种基于2D-CNN深度学习的钻井事故等级预测新方法. 天然气工业. 2022(12): 95-105 . 百度学术
22. 夏田,郭建斌,赵一号. 基于改进支持向量机的选区激光熔化参数优化的研究. 热加工工艺. 2021(04): 29-31+37 . 百度学术
23. 庞淼,雷银,卢杭,黄琦,何仕鹏. 降低钻井溢流智能化预警误报率的方法探索. 石油工业技术监督. 2021(10): 44-49 . 百度学术
24. 柳海啸,刘芳,代文星,冯一,巩永刚,李明明. 基于大数据分析技术的钻井提效实践. 石油钻采工艺. 2021(04): 436-441 . 百度学术
25. 刘兆年,赵颖,孙挺. 渤海区域基于数据驱动的钻井提速. 西南石油大学学报(自然科学版). 2020(06): 35-41 . 百度学术
其他类型引用(15)