水平井拖动管柱找水电控封隔器的研制与现场试验

朱洪征, 郑刚, 吕亿明, 苏祖波, 李大建, 崔文昊

朱洪征,郑刚,吕亿明,等. 水平井拖动管柱找水电控封隔器的研制与现场试验[J]. 石油钻探技术,2023, 51(2):102-108. DOI: 10.11911/syztjs.2023013
引用本文: 朱洪征,郑刚,吕亿明,等. 水平井拖动管柱找水电控封隔器的研制与现场试验[J]. 石油钻探技术,2023, 51(2):102-108. DOI: 10.11911/syztjs.2023013
ZHU Hongzheng, ZHENG Gang, LYU Yiming, et al. Development and field test of an electrically controlled packer for water prospecting by pulling pipe strings in horizontal wells [J]. Petroleum Drilling Techniques,2023, 51(2):102-108. DOI: 10.11911/syztjs.2023013
Citation: ZHU Hongzheng, ZHENG Gang, LYU Yiming, et al. Development and field test of an electrically controlled packer for water prospecting by pulling pipe strings in horizontal wells [J]. Petroleum Drilling Techniques,2023, 51(2):102-108. DOI: 10.11911/syztjs.2023013

水平井拖动管柱找水电控封隔器的研制与现场试验

基金项目: 中国石油与天然气集团有限公司重大工程现场试验项目“水平井找堵水技术试验”(编号:2019F-28)部分研究内容
详细信息
    作者简介:

    朱洪征(1981—),男,陕西蓝田人,2004年毕业于中国地质大学(武汉)石油工程专业,2011年获西安石油大学石油与天然气工程专业工程硕士学位,高级工程师,主要从事低渗透油田水平井采油工艺方面的研究工作。E-mail:zhz10_cq@petrochina.com.cn

  • 中图分类号: TE358+.3

Development and Field Test of an Electrically Controlled Packer for Water Prospecting by Pulling Pipe Strings in Horizontal Wells

  • 摘要:

    针对长庆油田长水平段水平井应用拖动管柱找水工艺时存在配套的机械式封隔器坐封压力控制难度大、反复坐封密封胶筒损伤导致封隔器稳定性大幅度降低等问题,研制了可定时或实时坐封解封、可实现任意层段封隔的水平井电控封隔器。该封隔器在设计时充分考虑了水平井段重复坐封次数及密封件的承压性能,尤其是驱动机构动力输出部分采用直流电机+行星减速器、运动转换部分采用丝杠螺母机构方式,确保在许用套管空间内可实现输出扭矩最大化及封隔器胶筒的压缩坐封。通过室内试验评价了电控封隔器的耐温耐压、输出力矩和坐封推力等性能,相关性能指标均满足设计要求。水平井找水电控封隔器在长庆油田3口井进行了现场试验,试验结果表明,该封隔器可最大程度地降低工程条件的影响,提高作业成功率及测试质量,使拖动管柱找水测试工艺更简便、费用更低。

    Abstract:

    When the technology for water prospecting by pulling pipe strings is applied in horizontal wells with long horizontal sections in Changqing Oilfield, it is difficult to control the setting pressure of matched mechanical packers, and the damage of sealing rubber cylinders caused by repeated setting results in a sharp reduction in the stability of packer setting tools. In view of these problems, an electrically controlled packer for horizontal wells was developed, which could bring about setting and unsealing on time or in real time, as well as packing of arbitrary layers. In terms of its design, the packer fully considered the repeated setting times in horizontal well sections and the pressure-bearing performance of seals. In particular, the power output part of the driving mechanism adopted a direct current motor and planetary reducer, and the motion conversion part used a screw and nut pair mechanism, so as to ensure that the output torque was maximized, and the packer rubber cylinder was compressed and set in the allowable casing space. The performance such as temperature and pressure resistance, output torque, and setting thrust of the electrically controlled packer were evaluated by laboratory tests, and the related indexes could meet the design requirements. Field tests were conducted in three wells in Changqing Oilfield. The results showed that the packer can minimize the impact of engineering conditions and improve the success rate and test quality of operations. Furthermore, it makes the technology of water prospecting by pulling pipe strings more convenient and economical.

  • 图  1   水平井电控封隔器+测试短节拖动找水工艺管柱结构

    Figure  1.   Structures of electronically controlled packer and pipe strings for horizontal well water prospecting by test joints

    图  2   水平井可电控封隔器结构示意

    Figure  2.   Structure of electrically controlled packer for horizontal wells

    图  3   电控封隔器胶筒坐封应力模拟分析结果

    Figure  3.   Simulation analysis results of setting stress in electrically controlled packer rubber cylinder

    图  4   电控封隔器驱动机构的工作原理

    Figure  4.   Working principle of the driving mechanism of electrically controlled packer

    图  5   电控封隔器各环节过液流道结构示意

    Figure  5.   Overcurrent area structure of each link of electrically controlled packer

    图  6   高温放电电流曲线

    Figure  6.   High temperature discharge current curve

    图  7   带载放电电压曲线

    Figure  7.   On-load discharge voltage curve

    图  8   电控封隔器坐封压力测试曲线

    Figure  8.   Test curve for the setting pressure of electrically controlled packer

    图  9   长平X井机械卡堵趾部生产动态曲线

    Figure  9.   Production dynamic curve of the mechanical blocking toe in Well Changping X

    表  1   电控封隔器系统耗电情况分析结果

    Table  1   Power consumption of electrically controlled packer system

    耗电项目供电配置消耗容量
    电机驱动电机单次工作时间25 min,平均工作电流70 mA一次坐封/解封所需电量0.058 Ah,10次为0.58 Ah
    主控电路控制电路单次工作电流20 mA10次坐封容量消耗0.166 Ah
    系统待机系统待机电流0.5 mA60 d井下工作最大容量消耗0.72 Ah
    下载: 导出CSV
  • [1] 熊友明,刘理明,张林,等. 我国水平井完井技术现状与发展建议[J]. 石油钻探技术,2012,40(1):1–6.

    XIONG Youming, LIU Liming, ZHANG Lin, et al. Present status and development comments on horizontal well completion techniques in China[J]. Petroleum Drilling Techniques, 2012, 40(1): 1–6.

    [2] 孙恩慧,李博,彭琴,等. 特高含水期下水平井油水两相产能研究[J]. 新疆石油天然气,2019,15(3):54–57.

    SUN Enhui, LI Bo, PENG Qin, et al. Method of productivity analysis for oil-and-water two-phase horizontal well during high water cut stage[J]. Xinjiang Oil & Gas, 2019, 15(3): 54–57.

    [3] 李大建,朱洪征,马国伟,等. 水平井找水技术现状与快速找水方法探讨[J]. 石油地质与工程,2021,35(1):109–112.

    LI Dajian, ZHU Hongzheng, MA Guowei, et al. Present situation of water detection technology by horizontal wells and discussion on rapid water detection method[J]. Petroleum Geology and Engineering, 2021, 35(1): 109–112.

    [4] 慕立俊,朱洪征,吕亿明,等. 低产液量水平井找堵水管柱的设计与应用[J]. 石油钻探技术,2014,42(1):91–94.

    MU Lijun, ZHU Hongzheng, LYU Yiming, et al. Design and application of water detecting and plugging pipe string for low production horizontal wells[J]. Petroleum Drilling Techniques, 2014, 42(1): 91–94.

    [5] 慕立俊,王百,崔文昊,等. 套返水平井单封拖动管柱快速找水方法研究与应用[J]. 石油矿场机械,2014,43(6):53–58.

    MU Lijun, WANG Bai, CUI Wenhao, et al. Study and application of fast-water detection in set return horizontal well using single packing drag pipe[J]. Oil Field Equipment, 2014, 43(6): 53–58.

    [6] 崔文昊,苏祖波,康健,等. 多段压裂水平井拖动管柱找水关键技术[J]. 石油钻探技术,2018,46(1):97–102.

    CUI Wenhao, SU Zubo, KANG Jian, et al. Key technology of water detection by dragging the pipe string in multi-stage fractured horizontal well[J]. Petroleum Drilling Techniques, 2018, 46(1): 97–102.

    [7] 龚宁,李进,陈娜,等. 渤海油田水平井出水特征及控水效果评价方法[J]. 特种油气藏,2019,26(5):147–152.

    GONG Ning, LI Jin, CHEN Na, et al. Water breakthrough patterns and water control evaluation of horizontal wells in Bohai Oilfield[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 147–152.

    [8] 石立华,王卫忠,王苛宇,等. 特低-超低渗透油藏分段压裂水平井开采参数优化研究及应用[J]. 兰州大学学报(自然科学版),2018,54(2):155–159.

    SHI Lihua, WANG Weizhong, WANG Keyu, et al. Parameter optimization of horizontal well staged fracturing in ultra-low permeability reservoirs[J]. Journal of Lanzhou University(Natural Sciences), 2018, 54(2): 155–159.

    [9] 石立华,程时清,常毓文,等. 延长油田水平井开发模式矿场实践[J]. 钻采工艺,2019,42(5):69–72.

    SHI Lihua, CHENG Shiqing, CHANG Yuwen, et al. Field practice of horizontal well development in Yanchang Oilfield[J]. Drilling & Production Technology, 2019, 42(5): 69–72.

    [10] 张立新,沈泽俊,李益良,等. 我国封隔器技术的发展与应用[J]. 石油机械,2007,35(8):58–60.

    ZHANG Lixin, SHEN Zejun, LI Yiliang, et al. Development and application of homemade packers[J]. China Petroleum Machinery, 2007, 35(8): 58–60.

    [11] 张颖,练章华,石磊,等. 机械式封隔器上压重与井口下放悬重关系研究[J]. 石油机械,2014,42(9):77–80.

    ZHANG Ying, LIAN Zhanghua, SHI Lei, et al. Analysis of relationship between load on mechanical packer and lowering hanging load at the wellhead[J]. China Petroleum Machinery, 2014, 42(9): 77–80.

    [12] 杨树坤,郭宏峰,郝涛,等. 海上油田电控智能控水采油工具研制及性能评价[J]. 石油钻探技术,2022,50(5):76–81. doi: 10.11911/syztjs.2022086

    YANG Shukun, GUO Hongfeng, HAO Tao, et al. Development and performance evaluation of an electrically controlled intelligent water control and oil recovery tool for offshore oilfields[J]. Petroleum Drilling Techniques, 2022, 50(5): 76–81. doi: 10.11911/syztjs.2022086

    [13] 廖成龙,张卫平,黄鹏,等. 电控智能完井技术研究及现场应用[J]. 石油机械,2017,45(10):81–85.

    LIAO Chenglong, ZHANG Weiping, HUANG Peng, et al. Study and application of electric intelligent well completion system[J]. China Petroleum Machinery, 2017, 45(10): 81–85.

    [14] 王云学,许仁波,孟奇龙,等. 压缩式封隔器胶筒接触力学行为有限元分析[J]. 武汉科技大学学报(自然科学版),2017,40(1):61–64.

    WANG Yunxue, XU Renbo, MENG Qilong, et al. Mechanical behaviors of contact of compressive packer’s rubber sleeve: A finite element analysis[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2017, 40(1): 61–64.

    [15] 杨晓翔, 史云沛. 工程力学[M]. 哈尔滨: 哈尔滨工程大学出版社, 1998: 152−172, 194−206.

    YANG Xiaoxiang, SHI Yunpei. Engineering mechanics[M]. Harbin: Harbin Engineering University Press, 1998: 152−172, 194−206.

    [16] SY/T 5106—1998 油气田用封隔器通用技术条件[S].

    SY/T 5106—1998 General technical factors for packer used in oil and gas field[S].

    [17] 范超毅,范巍. 步进电机的选型与计算[J]. 机床与液压,2008,36(5):310–313.

    FAN Chaoyi, FAN Wei. Selection and calculation of stepping motor[J]. Machine Tool & Hydraulics, 2008, 36(5): 310–313.

    [18] SY/T 5106—2019 石油天然气钻采设备 封隔器规范[S].

    SY/T 5106—2019 Petroleum & natural gas drilling and production equipment: specification for packers[S].

    [19] 江汉石油管理局采油工艺研究所. 封隔器理论基础与应用[M]. 北京: 石油工业出版社, 1983: 5-20.

    Oil Production Technology Research Institute of Jianghan Petroleum Administration Bureau. Theoretical basis and application of packers[M]. Beijing: Petroleum Industry Press, 1983: 5-20.

  • 期刊类型引用(6)

    1. 严德,陈彬,田瑞瑞,宋玲安,王彪,刘保波. 深水携表层钻井工艺技术. 钻采工艺. 2021(06): 36-39 . 百度学术
    2. 鲍新坤,任益辉. 深水喷射钻进钻井参数设计研究与制定. 石化技术. 2018(05): 252-253 . 百度学术
    3. 刘和兴,方满宗,刘智勤,徐一龙,孟文波. 南海西部陵水区块超深水井喷射下导管技术. 石油钻探技术. 2017(01): 10-16 . 本站查看
    4. 张洪坤,孙宝江,徐爽,黄名召,王凌霄,潘少伟,丛龙峰. 深水喷射下导管射流破土数值模拟及试验验证. 石油机械. 2016(04): 33-37+41 . 百度学术
    5. 周波,杨进,周建良,刘正礼,杨建刚. 深水钻井喷射下导管排量设计方法. 石油钻探技术. 2016(03): 21-26 . 本站查看
    6. 李家仪,许亮斌,周建良,畅元江. 基于非概率可靠性的喷射导管下入深度设计方法. 石油钻探技术. 2015(04): 8-12 . 本站查看

    其他类型引用(5)

图(9)  /  表(1)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  120
  • PDF下载量:  76
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-03-02
  • 修回日期:  2022-12-12
  • 网络出版日期:  2022-12-30
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回