钻井数字孪生系统设计与研发实践

Design and Research Practice of a Drilling Digital Twin System

  • 摘要: 数字孪生技术作为智能钻井的理想范式,已呈现出巨大潜力,但由于钻井工程具有复杂工业系统的特性,数字孪生技术研发难度大,目前尚处于起步阶段。为此,在分析石油行业数字孪生技术发展现状的基础上,厘清了钻井数字孪生涉及的6项支撑技术,结合钻井工程业务需求,设计了钻井数字孪生系统的整体架构并详述了其功能及模型设计。通过井场数据标准采集、机理计算模型耦合及三维动态融合显示3项研发试验,从技术角度验证了钻井数字孪生技术落地应用的可行性。研究认为,构建钻井数字孪生系统,应以钻井工程数据为数据基础,基于业务需求进一步构建“机理+数据”的双计算核心,研发孪生体模型和业务应用模块,并将其作为载体,最终实现钻井数字孪生系统的应用。研究结果对推进数字孪生技术在钻井工程中的应用具有重要意义。

     

    Abstract: As an ideal paradigm of intelligent drilling, digital twin technology shows great potential. However, due to the complex industrial system characteristics of drilling engineering, the research and development (R & D) of digital twin technology has been difficult and is still in its infancy. Therefore, on the basis of analyzing the development status of digital twin technology in the petroleum industry, six supporting technologies involved in drilling digital twin were clarified. Adhering to the business needs of drilling engineering, the overall architecture of a drilling digital twin system was designed, and the function and model designs were described in detail. Through three R & D tests of wellsite data standard collection, mechanism calculation model coupling and three-dimensional (3D) dynamic fusion display, the feasibility of implementing the drilling digital twin technology was verified from a technical point of view. The research takes the position that the construction of the drilling digital twin system should take drilling engineering data as the foundational bases of data. The “mechanism + data” dual computing core should be built based on the business needs, and the twin model and business application module should be developed as carriers, so as to realize the application of the drilling digital twin system. The research results are of great significance for promoting the application of digital twin technology in drilling engineering.

     

/

返回文章
返回