Safe and Efficient Drilling Technologies for Shallow Karst Strata for Shale Gas Wells in Southeast Sichuan
-
摘要:
四川盆地川东南构造带东胜背斜北部浅表地层岩溶发育,溶洞层级多,破碎带厚,尤其是嘉陵江组2段以上地层钻井液失返、井壁破碎带掉块严重,井下故障频发,多口井废弃。为了提高页岩气井的钻井效益,采取了优化井身结构、分井段优化钻具组合、分阶段优选钻井液,以及使用“组合法”注水泥固化破碎带井壁等技术措施,形成了川东南页岩气井岩溶浅表层安全高效钻井技术。该技术在东胜背斜北部区块10口井进行了现场应用,降低了浅表层井段发生井下故障的概率,提高了岩溶浅表层的钻井时效,浅表层成井率达到100%,机械钻速提高25.0%,钻井周期缩短63.2%。川东南页岩气井岩溶浅表层安全高效钻井技术为该区块高效开发提供了技术支撑。
Abstract:In the northern part of the Dongsheng Anticline, located in the Southeast Sichuan Tectonic Belt of the Sichuan Basin, karst is developed in shallow strata, here karst caves have many levels, with thick fracture zones. In particular, drilling fluid is often lost during the drilling the strata above the 2nd member of Jialingjiang Formation, fracture zones of the borehole wall fall off seriously, which results in frequent downhole failures and abandonment of wells. In order to improve the drilling efficiency of shale gas wells, technical measures were taken, such as optimizing the casing program, improving the bottom hole assembly(BHA) by well sections, selecting drilling fluids by stages, and cementing the borehole wall with fracture zones by a combination method, which formed the safe and efficient drilling technologies for shallow karst strata for shale gas wells in southeast Sichuan, improving the drilling efficiency of shallow karst strata and shortened the drilling cycle. In addition, the technologies were applied in 10 wells in the northern block of the Dongsheng Anticline. As a result, the probability of downhole complications in well sections with shallow strata was reduced, and the well completion rate in shallow strata reached 100%. The rate of penetration (ROP) was increased by 25.0%, and the drilling cycle was decreased by 63.2%. Having safe and efficient drilling technologies for shallow karst strata for shale gas wells in Southeast Sichuan can provide technical support for efficient development of the block.
-
Keywords:
- shale gas well /
- karst /
- shallow strata /
- lost circulation /
- BHA /
- safe and efficient /
- drilling cycle
-
-
表 1 不同温度、体积比下的水泥石抗压强度
Table 1 Compressive strength of cement stone under different temperatures and volume ratios
类型 比例 温度/℃ 抗压强度/MPa 24 h 48 h 纯水泥 25 8.6 19.0 50 13.9 22.0 双液法 2∶1 25 1.6 3∶1 25 1.8 6.7 4∶1 25 3.6 10.5 5∶1 25 4.1 低密度泡沫水泥浆法 50 5.1 表 2 川东南页岩气井岩溶浅表层安全高效钻井技术应用前后钻井数据对比
Table 2 Comparison of drilling data before and after the application of safe and efficient drilling technologies for shallow karst strata for shale gas wells in southeast Sichuan
井 号 导管井深/m 导管完钻层位 一开井深/ m 一开完钻层位 浅表层施工周期/d 井下故障 是否应用新技术1) DP1HF 72.00 雷口坡组 1 231.00 飞仙关组 65.50 有 否 DP20-2HF 202.26 嘉4段 850.00 嘉1段 85.67 有 否 DP1-8HF 272.00 嘉4段 880.00 嘉1段 65.83 有 否 DP3-4HF 817.00 嘉4段 1 390.00 嘉1段 63.33 有 否 DP33-2HF 245.00 嘉4段 820.00 嘉1段 59.06 有 否 DP20-1HF 230.00 嘉4段 846.00 嘉1段 35.63 有 是 DP20-3HF 243.85 嘉4段 839.00 嘉1段 41.08 无 是 DP36-3HF 448.00 嘉4段 1 694.00 飞仙关组 27.71 无 是 DP1-6HF 299.00 嘉4段 856.00 嘉1段 28.19 无 是 DP1-5HF 332.00 嘉4段 860.00 嘉1段 21.94 无 是 DP33-6HF 258.00 嘉4段 815.00 嘉1段 27.75 无 是 DP1-7HF 280.00 嘉4段 863.00 嘉1段 29.48 无 是 DP33-5HF 291.00 嘉4段 808.00 嘉1段 18.43 无 是 DP33-4HF 245.00 嘉4段 810.00 嘉1段 9.82 无 是 DP33-3HF 245.00 嘉4段 814.50 嘉1段 9.50 无 是 注:1)“新技术”指“川东南页岩气井岩溶浅表层安全高效钻井技术”。 -
[1] 曹伯勋. 地貌学及第四纪地质学[M]. 武汉: 中国地质大学出版社, 1995: 85−87. CAO Boxun. Geomorphology and quaternary geology[M]. Wuhan: China University of Geosciences Press, 1995: 85−87.
[2] 刘贤玉,管申,韩成,等. 北部湾盆地开发井高效安全钻井技术[J]. 石油钻探技术,2020,48(1):21–25. doi: 10.11911/syztjs.2019116 LIU Xianyu, GUAN Shen, HAN Cheng, et al. High-efficiency and safe drilling technologies for development wells in the Beibuwan Basin[J]. Petroleum Drilling Techniques, 2020, 48(1): 21–25. doi: 10.11911/syztjs.2019116
[3] 曹华庆,吴波,龙志平,等. 京津冀岩溶热储钻井关键技术[J]. 石油钻探技术,2021,49(2):42–47. doi: 10.11911/syztjs.2020105 CAO Huaqing, WU Bo, LONG Zhiping, et al. Key technologies involved in karstic geothermal reservoir drilling in the Beijing-Tianjin-Hebei Region[J]. Petroleum Drilling Techniques, 2021, 49(2): 42–47. doi: 10.11911/syztjs.2020105
[4] 郭峰. 碳酸盐岩沉积学[M]. 北京: 石油工业出版社, 2011: 51−54. GUO Feng. Carbonate sedimentology[M]. Beijing: Petroleum Industry Press, 2011: 51−54.
[5] 黄思静. 碳酸盐岩的成岩作用[M]. 北京: 地质出版社, 2010: 87−89. HUANG Sijing. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010: 87−89.
[6] 朱学稳. 喀斯特与洞穴研究[M]. 北京: 地质出版社, 2010: 21−24. ZHU Xuewen. On karst and caves[M]. Beijing: Geological Publishing House, 2010: 21−24.
[7] 卓云,曾庆旭,刘德平,等. 碳酸盐岩裂缝溶洞层胶质水泥堵漏技术:以川东地区蒲005-2井为例[J]. 天然气工业,2010,30(5):84–86. doi: 10.3787/j.issn.1000-0976.2010.05.021 ZHUO Yun, ZENG Qingxu, LIU Deping, et al. Gel cementing technology for the wells drilled in the acture-karst carbonate reservoirs: a case study of the Well Pu 005-2 in Eastern Sichuan Basin[J]. Natural Gas Industry, 2010, 30(5): 84–86. doi: 10.3787/j.issn.1000-0976.2010.05.021
[8] 李家学,黄进军,罗平亚,等. 随钻防漏堵漏技术研究[J]. 钻井液与完井液,2008,25(3):25–28. doi: 10.3969/j.issn.1001-5620.2008.03.009 LI Jiaxue, HUANG Jinjun, LUO Pingya, et al. Researches on mud losses prevention and control[J]. Drilling Fluid & Completion Fluid, 2008, 25(3): 25–28. doi: 10.3969/j.issn.1001-5620.2008.03.009
[9] FIDAN E, BABADAGLI T, KURU E. Use of cement as lost circulation material-field case studies[R]. SPE 88005, 2004.
[10] 孙金声,白英睿,程荣超,等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630–638. doi: 10.11698/PED.2021.03.18 SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3): 630–638. doi: 10.11698/PED.2021.03.18
[11] 周井红,王先兵,徐兴海,等. 适合页岩气钻井堵漏的环保型堵漏剂AT-SPS性能评价与应用工艺[J]. 石油与天然气化工,2021,50(5):71–74. doi: 10.3969/j.issn.1007-3426.2021.05.014 ZHOU Jinghong, WANG Xianbing, XU Xinghai, et al. Performance evaluation and application process of environment-friendly plugging agent AT-SPS in shale gas drilling[J]. Chemical Engineering of Oil and Gas, 2021, 50(5): 71–74. doi: 10.3969/j.issn.1007-3426.2021.05.014
[12] 张浩,毕雪亮,刘维凯,等. EM-MWD信号在钻柱中传输的影响因素研究[J]. 石油钻探技术,2021,49(6):125–130. doi: 10.11911/syztjs.2021128 ZHANG Hao, BI Xueliang, LIU Weikai, et al. Investigation of the factors that influence EM-MWD signal transmission in drill strings[J]. Petroleum Drilling Techniques, 2021, 49(6): 125–130. doi: 10.11911/syztjs.2021128
[13] 李凯. 分层介质中的电磁场和电磁波[M]. 杭州: 浙江大学出版社, 2010: 21−25. LI Kai. Fields and waves in layered media[M]. Hangzhou: Zhejiang University Press, 2010: 21−25.
[14] 肖俊. 涪陵工区应用电磁波随钻仪器(EM-MWD)的探讨[J]. 江汉石油科技,2017,27(3):47–50. XIAO Jun. Discussion on application of electromagnetic wave while-drilling instrument (EM-MWD) in Fuling working area[J]. Jianghan Petroleum Science and Technology, 2017, 27(3): 47–50.
-
期刊类型引用(4)
1. 李昂,杨万有,郑春峰,沈琼,赵景辉,薛德栋. 海上油田采油技术创新实践及发展方向. 石油钻探技术. 2024(06): 75-85 . 本站查看
2. 杨阳,曹砚锋,于继飞,邢希金,杜孝友. 基于等级加权法的油田注水水质优选方法. 西安石油大学学报(自然科学版). 2019(02): 99-103 . 百度学术
3. 魏永祥,刘俊刚,陈敏,关野,王晓明,步万荣. 电潜泵提液采油配套技术的应用. 价值工程. 2018(32): 246-247 . 百度学术
4. 郭志辉,秦丙林,陆国琛,李乾,王颖. WZ油田人工举升方式优选研究. 海洋石油. 2018(04): 45-51 . 百度学术
其他类型引用(1)