The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield
-
摘要:
大庆油田古龙页岩油开发大多采用长水平段水平井,但长水平段水平井钻井过程中,岩屑易在井筒内自由沉降而形成岩屑床,导致沉砂卡钻等井下故障,因此需要研究岩屑颗粒的沉降规律,优化钻井液性能及水力参数,确保井眼清洁。为此,利用可视化的试验装置和高速摄像机,系统记录了试验中颗粒在幂律流体中的沉降行为,获得了196组球形颗粒和224组不规则形状岩屑在幂律流体中自由沉降的试验数据。采用一种依赖于沉降颗粒受力平衡的力学模型对试验数据进行统计分析,建立了幂律流体中球形颗粒阻力系数预测模型。在此基础上,引入二维形状描述参数,建立了幂律流体中不规则形状岩屑阻力系数预测模型。该模型预测准确性较高,平均相对误差仅6.93%,能够满足钻井工程中预测岩屑沉降速度的需求。
Abstract:Horizontal wells with long horizontal sections are mostly adopted in developing the Gulong shale oil in Daqing Oilfield. However, during the drilling process of the horizontal wells with long horizontal sections, the broken cuttings in the borehole annulus easily settle freely in wellbore drilling fluids to form cuttings beds. In order to avoid downhole failures such as sand sinking and sticking caused by cuttings deposition, it is necessary to study the settlement law of cuttings particles and predict the final velocity of cuttings settlement. In this paper, the settlement behavior of particles in power-law fluids was systematically recorded by visual devices and high-speed cameras during experiments. The experimental data from the free settlement of 196 groups of spherical particles and 224 groups of irregularly shaped cuttings in the power-law fluids were obtained. A mechanical model dependent on the force balance of settling particles was adopted, and the experimental data were analyzed in detail. A model for predicting the drag coefficient of spherical particles in the power-law fluids was established. On this basis, a two-dimensional shape description parameter was introduced to establish a model for predicting the drag coefficient of irregularly shaped cuttings in the power-law fluids. The prediction model showed high accuracy, and the average relative error was only 6.93%. Therefore, the model can meet the need of predicting cuttings settling velocity in drilling engineering.
-
Keywords:
- shale /
- shale cuttings settlement /
- drag coefficient /
- power-law fluid /
- borehole cleaning /
- Gulong Sag /
- Daqing Oilfield
-
-
表 1 试验用颗粒的物性参数
Table 1 Physical property parameters of particles for experiments
颗粒材质 颗粒等效直径/mm 密度/(kg·m−3) 不锈钢 1,2,3,4,5 7 930 氧化锆 1,2,3,4,5 6 080 玻璃 1,2,3,4,5 2 500 页岩颗粒 2.1~5.7 2 073 表 2 不同质量分数CMC水溶液的物性参数及流变参数
Table 2 Physical property and rheological parameters of CMC aqueous solution with different mass fractions
CMC质量分数,% 温度/℃ 密度/(kg·m−3) 流变参数 K/(Pa·sn) n 2.00 17.3 1 008.0 8.161 9 0.418 2 1.75 18.6 1 006.0 5.340 5 0.443 7 1.50 18.0 1 005.0 3.320 4 0.471 0 1.25 17.6 1 004.5 1.532 2 0.522 4 1.00 17.2 1 003.0 0.697 7 0.578 6 0.50 16.6 1 002.0 0.045 0 0.819 4 0.25 16.9 1 001.0 0.008 0 0.953 0 表 3 幂律流体中球形颗粒沉降阻力系数误差统计
Table 3 Error statistics of the settlement drag coefficient of spherical particles in power-law fluids
颗粒雷诺数范围 模型 预测误差,% δMRE δMMRE δRMSLE 0.001<Res<848.000 式(8) 17.36 23.00 34.94 式(9) 13.31 14.00 32.73 式(11) 20.84 34.00 39.24 式(13) 7.11 8.00 19.72 -
[1] 王春雨,杨喆,杨思琪. 12.68×108 t !大庆页岩油勘探获重大突破[J]. 油气田地面工程,2021,40(9):21. WANG Chunyu, YANG Zhe, YANG Siqi. 12.68×108t ! Daqing shale oil exploration made a major breakthrough[J]. Oil-Gas Field Surface Engineering, 2021, 40(9): 21.
[2] 孙龙德,刘合,何文渊,等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发,2021,48(3):453–463. doi: 10.11698/PED.2021.03.02 SUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453–463. doi: 10.11698/PED.2021.03.02
[3] MOREIRA B A, DE OLIVEIRA A F, DAMASCENO J J R. Analysis of suspension sedimentation in fluids with rheological shear-thinning properties and thixotropic effects[J]. Powder Technology, 2017, 308: 290–297. doi: 10.1016/j.powtec.2016.12.034
[4] 刘庆岭,田守嶒,李根生,等. 球形颗粒在含纤维幂律流体中沉降速度预测模型[J]. 石油科学通报,2017,2(2):298–308. LIU Qingling, TIAN Shouceng, LI Gensheng, et al. PrediCtion model for settling velocity of solid spheres in fiber containing power-law fluids[J]. Petroleum Science Bulletin, 2017, 2(2): 298–308.
[5] DUAN Mingqin, MISKA S, YU Mengjiao, et al. Transport of small cuttings in extended-reach drilling[J]. SPE Drilling & Completion, 2008, 23(3): 258–265.
[6] SORGUN M. Simple correlations and analysis of cuttings transport with Newtonian and non-Newtonian fluids in horizontal and deviated wells[J]. Journal of Energy Resources Technology, 2013, 135(3): 032903. doi: 10.1115/1.4023740
[7] LARSEN T I, PILEHVARI A A, AZAR J J. Development of a new cuttings-transport model for high-angle wellbores including horizontal wells[J]. SPE Drilling & Completion, 1997, 12(2): 129–135.
[8] BARATI R, NEYSHABOURI S A A S, AHMADI G. Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: an evolutionary approach[J]. Powder Technology, 2014, 257: 11–19. doi: 10.1016/j.powtec.2014.02.045
[9] CHENG Niansheng. Comparison of formulas for drag coefficient and settling velocity of spherical particles[J]. Powder Technology, 2009, 189(3): 395–398. doi: 10.1016/j.powtec.2008.07.006
[10] 李梦博,柳贡慧,李军,等. 考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J]. 石油钻探技术,2014,42(5):74–79. doi: 10.11911/syztjs.201405013 LI Mengbo, LIU Gonghui, LI Jun, et al. Research on wellbore temperature field with helical flow of non-Newtonian fluids in drilling operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74–79. doi: 10.11911/syztjs.201405013
[11] 汪海阁,刘希圣. 钻井液流变模式比较与优选[J]. 钻采工艺,1996,19(1):63–67. WANG Haige, LIU Xisheng. Comparison and optimization of drilling fluid rheological model[J]. Drilling & Production Technology, 1996, 19(1): 63–67.
[12] GUO Xiaohui, LIN Jianzhong, NIE Deming. New formula for drag coefficient of cylindrical particles[J]. Particuology, 2011, 9(2): 114–120. doi: 10.1016/j.partic.2010.07.027
[13] WANG Jinsheng, QI Haiying, ZHU Junzong. Experimental study of settling and drag on cuboids with square base[J]. Particuology, 2011, 9(3): 298–305. doi: 10.1016/j.partic.2010.11.002
[14] 方国球. 钻井岩粉在钻井液中自由沉降的实验研究:岩粉的沉降阻力系数及沉降速度[J]. 探矿工程(岩土钻掘工程),1995(5):41–43. FANG Guoqiu. An experimental study on free settlement of drilling cuttings in drilling fluid: drag coefficient and settling velocity[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 1995(5): 41–43.
[15] DIOGUARDI F, MELE D. A new shape dependent drag correlation formula for non-spherical rough particles. Experiments and results[J]. Powder Technology, 2015, 277: 222–230. doi: 10.1016/j.powtec.2015.02.062
[16] FERREIRA T, RASBAND W. ImageJ user guide: IJ 1.46r[M]. Bethesda: NIH, 2012: 132 − 141.
[17] SHAH S N, EL FADILI Y, CHHABRA R P. New model for single spherical particle settling velocity in power law (visco-inelastic) fluids[J]. International Journal of Multiphase Flow, 2007, 33(1): 51–66. doi: 10.1016/j.ijmultiphaseflow.2006.06.006
[18] KHAN A R, RICHARDSON J F. The resistance to motion of a solid sphere in a fluid[J]. Chemical Engineering Communications, 1987, 62(1/6): 135–150.
[19] MACHAČ I, ULBRICHOVÁ I, ELSON T P, et al. Fall of spherical particles through non-Newtonian suspensions[J]. Chemical Engineering Science, 1995, 50(20): 3323–3327. doi: 10.1016/0009-2509(95)00168-5
[20] KELESSIDIS V C, MPANDELIS G. Measurements and prediction of terminal velocity of solid spheres falling through stagnant pseudoplastic liquids[J]. Powder Technology, 2004, 147(1/3): 117–125.
[21] GOOSSENS W R A. Review of the empirical correlations for the drag coefficient of rigid spheres[J]. Powder Technology, 2019, 352: 350–359. doi: 10.1016/j.powtec.2019.04.075
[22] RUSHD S, HASSAN I, SULTAN R A, et al. Terminal settling velocity of a single sphere in drilling fluid[J]. Particulate Science and Technology, 2019, 37(8): 943–952. doi: 10.1080/02726351.2018.1472162
[23] DIOGUARDI F, MELE D, DELLINO P. A new one-equation model of fluid drag for irregularly shaped particles valid over a wide range of Reynolds number[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(1): 144–156. doi: 10.1002/2017JB014926
[24] SHAHI S, KURU E. An experimental investigation of settling velocity of natural sands in water using Particle Image Shadowgraph[J]. Powder Technology, 2015, 281: 184–192. doi: 10.1016/j.powtec.2015.04.065
-
期刊类型引用(11)
1. 庞涛,姜在炳,惠江涛,贾秉义. 煤系水平井定向射孔压裂裂缝扩展机制. 煤田地质与勘探. 2024(04): 68-75 . 百度学术
2. 安果涛,谢昕,孔祥伟,王存武. 射孔间距-倾角对深煤层水力裂缝扩展影响的离散元分析. 科学技术与工程. 2024(18): 7623-7629 . 百度学术
3. 杨兆中,杨晨曦,李小刚,闵超. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井——以沁水盆地柿庄南区块为例. 科学技术与工程. 2020(12): 4680-4686 . 百度学术
4. 马东民,王传涛,夏玉成,张嘉睿,邵凯,杨甫. 大佛寺井田煤层气井压裂参数优化方案. 西安科技大学学报. 2019(02): 263-269 . 百度学术
5. 李昀昀,傅小康,李千山,孙宁蔚. 我国煤层气排采技术研究现状. 石油化工应用. 2019(04): 1-4+10 . 百度学术
6. 孙宁蔚. 基于灰色关联的沁水盆地煤层气井排采特征分析. 石油化工应用. 2019(11): 7-9+32 . 百度学术
7. 杨兆中,刘云锐,张平,李小刚,易良平. 煤层气直井地层破裂压力计算模型. 石油学报. 2018(05): 578-586 . 百度学术
8. 杨新新,王伟锋,姜帅,杨浩珑. 抗高温高密度低伤害压裂液体系. 断块油气田. 2017(04): 583-586 . 百度学术
9. 张快乐,刘化普. 利用数值试井反演井组低渗透储层参数. 中外能源. 2017(09): 44-48 . 百度学术
10. 李玉伟,贾丹,高睿,高长龙,米洁翰,艾池. 煤岩复杂裂缝长期导流能力实验研究. 天然气与石油. 2017(01): 94-99+11-12 . 百度学术
11. 陈德飞,孟祥娟,周玉,张慧芳,江春明. 岩石破坏后力学特性及其对天然气开采的影响. 断块油气田. 2016(03): 405-408 . 百度学术
其他类型引用(8)