Micro Digital Analysis on Instability Form and Mechanism of Mudstone Borehole Wall in Songnan Gas Field
-
摘要:
针对松辽盆地松南气田青山口组、泉头组和登娄库组泥岩井壁失稳的问题,运用高精度CT扫描数字化成像技术建立了数字岩样,并应用岩石微观结构数字图像数值分析方法提取物性参数,通过综合对比不同地层泥岩矿物组成、理化性能,以及泥岩经蒸馏水、不同钻井液处理剂溶液和现场钻井液浸泡后内部微观结构损伤变化等,揭示了泥岩井壁失稳的形式及其机制。3组泥岩岩样黏土矿物含量平均达到34.56%,且以伊/蒙混层、伊利石为主,均具有较强的毛细管自吸水化作用;因组构特征不同,水化损伤微观裂变扩展、裂变过程及其破裂模式与程度存在明显差异;裂变扩展过程决定了次生裂缝的走势与强度,从而决定了泥岩地层井壁宏观上的失稳形式主要是片状剥离和掉块坍塌;不同测试液抑制泥岩水化的作用机理不同,其效果存在明显差异,预防泥岩水化的关键是有效控制或阻缓水分子侵入。分析结果表明,采用数字化成像分析技术进行井壁稳定性评价时,在岩样微观结构损伤的直观刻画、定量描述及对比分析等方面具有明显优势;泥岩地层井壁失稳形式及失稳机制的揭示,为松南气田钻井液处理剂的优选和钻井液配方的优化提供了科学依据。
Abstract:The Qingshankou Formation, Quantou Formation, and Denglouku Formation of Songnan Gas Field in Songliao Basin have unstable mudstone borehole walls. Considering this problem, the digital rock samples were established by high-precision CT scanning-based digital imaging technology, and the physical properties of the samples were extracted by numerical analysis of the digital rock microstructure image. A comprehensive comparative analysis was conducted in terms of the mudstone mineral composition, and physical and chemical properties of formations, as well as the microstructure damage variations in the rock samples caused by the physical and chemical actions when they were soaked in distilled water, solutions of different drilling fluid additives, and on-site drilling fluids. In this way, the instability forms and mechanisms of mudstone borehole walls were revealed. The results demonstrated that for the mudstone samples from the three formations, the content of clay minerals reached 34.56% on average, and they were mainly composed of mixed illite/smectite and illite, which all had strong hydration of spontaneous capillary imbibition. Due to different fabric characteristics, there was a great difference in the micro-fission expansion, fission process, and fracture mode and degree of hydration damage. The fission expansion process determined the trend and strength of secondary fractures, which further decided the macroscopic instability forms of mudstone borehole walls were mainly sheet stripping and falling block collapse. The mechanisms of various test fluids inhibiting the hydration of mudstone differed, and their effects also demonstrated significant differences. Hence, effectively controlling or inhibiting the intrusion of water molecules was the key to preventing the hydration of mudstone. The analysis suggests that the digital imaging analysis technology has great advantages in evaluating borehole wall instability regarding the intuitive characterization, quantitative description, and comparative analysis of the microstructure damage to the rock samples. The revealed instability forms and mechanisms of mudstone borehole walls provide a scientific basis for the optimal selection of drilling fluid additives and the formula of the drilling fluid system for Songnan Gas Field.
-
Keywords:
- mudstone /
- borehole wall instability /
- microstructure /
- hydration /
- CT scanning /
- Songnan Gas Field
-
-
表 1 泥岩岩样全岩矿物分析结果
Table 1 Whole-rock mineral analysis results of mudstone rock sample
井深/m 地层 样品数量 全岩矿物含量,% 石英 钾长石 斜长石 方解石 白云石 赤铁矿 黏土矿物 2 100 青山口组 23 47.9 13.9 1.6 0.1 36.5 2 799 泉头组 43 38.8 2.6 7.3 10.4 4.0 36.9 3 288 登娄库组 50 51.6 6.8 10.6 0.7 30.3 表 2 泥岩岩样黏土矿物相对含量分析结果
Table 2 Analysis result of relative content of clay mineral of mudstone rock sample
井深/m 地层 黏土矿物相对含量,% 混层比,% 高岭石 绿泥石 伊利石 伊/蒙混层 2 100 青山口组 2.8 17.0 25.6 54.6 20.0 2 799 泉头组 2.0 15.7 33.0 49.3 25.0 3 288 登娄库组 0.5 9.1 44.0 46.4 26.5 表 3 泥岩岩样的线性膨胀率及滚动回收率
Table 3 Linear expansion rate and rolling recovery rate of mudstone rock sample
井深/m 地层 线性膨胀率,% 滚动回收率,% 1 h 2 h 4 h 8 h 16 h 24 h 16 h 32 h 2 100 青山口组 0.98 1.53 3.50 7.65 9.20 9.26 89.6 86.4 2 799 泉头组 1.44 1.86 4.25 8.90 12.24 13.85 80.0 72.3 3 288 登娄库组 1.05 1.43 3.76 8.56 10.23 11.12 85.3 78.6 -
[1] 任宪军. 松辽盆地长岭断陷盆缘陡坡带中性火山岩相模式及其对储层的控制作用[J]. 吉林大学学报(地球科学版),2022,52(3):816–828. doi: 10.13278/j.cnki.jjuese.20210177 REN Xianjun. Faces model of intermediate volcanic rocks in steep slope and its control on resevoirs: a case study in Changling Fault Depression, Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(3): 816–828. doi: 10.13278/j.cnki.jjuese.20210177
[2] 刘彦学. 松南气田低密度低伤害随钻堵漏钻井液技术[J]. 钻井液与完井液,2019,36(4):442–448. doi: 10.3969/j.issn.1001-5620.2019.04.008 LIU Yanxue. Low damage low density drilling fluid used in Songnan Gas Filed for lost circulation control while drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 442–448. doi: 10.3969/j.issn.1001-5620.2019.04.008
[3] 李凯,何志鹏,谢建文. 数字图像技术在岩土工程中的应用综述[J]. 地质与资源,2020,29(1):106–112. doi: 10.3969/j.issn.1671-1947.2020.01.014 LI Kai, HE Zhipeng, XIE Jianwen. The application of digital image techniques in geotechnical researches: a review[J]. Geology and Resources, 2020, 29(1): 106–112. doi: 10.3969/j.issn.1671-1947.2020.01.014
[4] 赵建鹏,崔利凯,陈惠,等. 基于CT扫描数字岩心的岩石微观结构定量表征方法[J]. 现代地质,2020,34(6):1205–1213. ZHAO Jianpeng, CUI Likai, CHEN Hui, et al. Quantitative characterization of rock microstructure of digital core based on CT scanning[J]. Geoscience, 2020, 34(6): 1205–1213.
[5] 盛军,杨晓菁,李纲,等. 基于多尺度X-CT成像的数字岩心技术在碳酸盐岩储层微观孔隙结构研究中的应用[J]. 现代地质,2019,33(3):653–661. SHENG Jun, YANG Xiaojing, LI Gang, et al. Application of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs[J]. Geoscience, 2019, 33(3): 653–661.
[6] 刘锟. 硬脆性页岩水化控制方法研究[D]. 成都: 西南石油大学, 2014. LIU Kun. Study on hydration control method of hard brittle shale[D]. Chengdu: Southwest Petroleum University, 2014.
[7] 冯文凯,黄润秋,许强. 岩石的微观结构特征与其力学行为启示[J]. 水土保持研究,2009,16(6):26–29. FENG Wenkai, HUANG Runqiu, XU Qiang. The enlightenment of microstructure characteristic and mechanical behavior of rock[J]. Research of Soil and Water Conservation, 2009, 16(6): 26–29.
[8] 石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137–142. doi: 10.7623/syxb201201020 SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1): 137–142. doi: 10.7623/syxb201201020
[9] 程志林,隋微波,宁正福,等. 数字岩芯微观结构特征及其对岩石力学性能的影响研究[J]. 岩石力学与工程学报,2018,37(2):449–460. doi: 10.13722/j.cnki.jrme.2017.1122 CHENG Zhilin, SUI Weibo, NING Zhengfu, et al. Microstructure characteristics and its effects on mechanical properties of digital core[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 449–460. doi: 10.13722/j.cnki.jrme.2017.1122
[10] 薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1075–1081. doi: 10.11698/PED.2018.06.16 XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075–1081. doi: 10.11698/PED.2018.06.16
[11] 叶洪涛. 页岩储层自发渗吸特征及影响因素研究[D]. 北京: 中国石油大学(北京), 2019. YE Hongtao. Study on characteristics and influencing factors of spontaneous imbibition of shale[D]. Beijing: China University of Petroleum(Beijing), 2019.
[12] 黄睿哲,姜振学,高之业,等. 页岩储层组构特征对自发渗吸的影响[J]. 油气地质与采收率,2017,24(1):111–115. HUANG Ruizhe, JIANG Zhenxue, GAO Zhiye, et al. Effect of composition and structural characteristics on spontaneous imbibition of shale reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 111–115.
[13] 徐先国,张歧安. 新型胺基聚醇防塌剂研究[J]. 钻采工艺,2010,33(1):93–95. doi: 10.3969/j.issn.1006-768X.2010.01.030 XU Xianguo, ZHANG Qi’an. Research on new amine polymeric alcohol anti-sloughing agent[J]. Drilling & Production Technology, 2010, 33(1): 93–95. doi: 10.3969/j.issn.1006-768X.2010.01.030
[14] ZHUANG Li, KIM K Y, JUNG S G, et al. Effect of water infiltration, injection rate and anisotropy on hydraulic fracturing behavior of granite[J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 575–589. doi: 10.1007/s00603-018-1431-3
[15] ZHANG Shifeng, SHENG J J. Study of the propagation of hydration-induced fractures in mancos shale using computerized tomography[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95: 1–7. doi: 10.1016/j.ijrmms.2017.03.011
[16] 王泽云,刘立,刘保县. 岩石微结构与微裂纹的损伤演化特征[J]. 岩石力学与工程学报,2004,23(10):1599–1603. doi: 10.3321/j.issn:1000-6915.2004.10.002 WANG Zeyun, LIU Li, LIU Baoxian. Characteristics of damage evolution of micropore and microcrack in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(10): 1599–1603. doi: 10.3321/j.issn:1000-6915.2004.10.002
[17] 石秉忠,夏柏如. 硬脆性泥页岩水化过程的微观结构变化[J]. 大庆石油学院学报,2011,35(6):28–34. SHI Bingzhong, XIA Bairu. The variation of microstructures in the hard brittle shale hydration process[J]. Journal of Daqing Petroleum Institute, 2011, 35(6): 28–34.
[18] 杨成祥,宋磊博,王刚,等. CT 实时观察下泥岩遇水软化过程的机理[J]. 东北大学学报(自然科学版),2015,36(10):1461–1465. doi: 10.12068/j.issn.1005-3026.2015.10.021 YANG Chengxiang, SONG Leibo, WANG Gang, et al. Mechanism of water-weakening process of mudrock observed using real-time CT[J]. Journal of Northeastern University(Natural Science), 2015, 36(10): 1461–1465. doi: 10.12068/j.issn.1005-3026.2015.10.021
-
期刊类型引用(2)
1. 杨文景,史宏江,潘兴明,路一平,王志国. 耐磨集成测井电极优化设计. 石油矿场机械. 2024(03): 48-53 . 百度学术
2. 曾祥安,朱丹丹,周昊,徐朝晖. 基于特征融合的微电阻率成像测井空白带无监督填充方法. 电子测量技术. 2024(08): 171-180 . 百度学术
其他类型引用(0)