松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析

石秉忠, 张栋, 褚奇

石秉忠,张栋,褚奇. 松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析[J]. 石油钻探技术,2023, 51(1):22-33. DOI: 10.11911/syztjs.2023005
引用本文: 石秉忠,张栋,褚奇. 松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析[J]. 石油钻探技术,2023, 51(1):22-33. DOI: 10.11911/syztjs.2023005
SHI Bingzhong, ZHANG Dong, CHU Qi. Micro digital analysis on instability form and mechanism of mudstone borehole wall in Songnan Gas Field [J]. Petroleum Drilling Techniques,2023, 51(1):22-33. DOI: 10.11911/syztjs.2023005
Citation: SHI Bingzhong, ZHANG Dong, CHU Qi. Micro digital analysis on instability form and mechanism of mudstone borehole wall in Songnan Gas Field [J]. Petroleum Drilling Techniques,2023, 51(1):22-33. DOI: 10.11911/syztjs.2023005

松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析

基金项目: 中国石化基础前瞻项目“基于微观分析的钻井液对岩石作用机理研究”(编号:P20047-1)资助
详细信息
    作者简介:

    石秉忠(1966—),男,河南淮阳人,1991年毕业于长春地质学院探矿工程专业,2013年获中国地质大学(北京)钻井工程专业博士学位,正高级工程师,主要从事钻井液技术研究工作。E-mail:shibz.sripe@sinopec.com。

  • 中图分类号: TE21

Micro Digital Analysis on Instability Form and Mechanism of Mudstone Borehole Wall in Songnan Gas Field

  • 摘要:

    针对松辽盆地松南气田青山口组、泉头组和登娄库组泥岩井壁失稳的问题,运用高精度CT扫描数字化成像技术建立了数字岩样,并应用岩石微观结构数字图像数值分析方法提取物性参数,通过综合对比不同地层泥岩矿物组成、理化性能,以及泥岩经蒸馏水、不同钻井液处理剂溶液和现场钻井液浸泡后内部微观结构损伤变化等,揭示了泥岩井壁失稳的形式及其机制。3组泥岩岩样黏土矿物含量平均达到34.56%,且以伊/蒙混层、伊利石为主,均具有较强的毛细管自吸水化作用;因组构特征不同,水化损伤微观裂变扩展、裂变过程及其破裂模式与程度存在明显差异;裂变扩展过程决定了次生裂缝的走势与强度,从而决定了泥岩地层井壁宏观上的失稳形式主要是片状剥离和掉块坍塌;不同测试液抑制泥岩水化的作用机理不同,其效果存在明显差异,预防泥岩水化的关键是有效控制或阻缓水分子侵入。分析结果表明,采用数字化成像分析技术进行井壁稳定性评价时,在岩样微观结构损伤的直观刻画、定量描述及对比分析等方面具有明显优势;泥岩地层井壁失稳形式及失稳机制的揭示,为松南气田钻井液处理剂的优选和钻井液配方的优化提供了科学依据。

    Abstract:

    The Qingshankou Formation, Quantou Formation, and Denglouku Formation of Songnan Gas Field in Songliao Basin have unstable mudstone borehole walls. Considering this problem, the digital rock samples were established by high-precision CT scanning-based digital imaging technology, and the physical properties of the samples were extracted by numerical analysis of the digital rock microstructure image. A comprehensive comparative analysis was conducted in terms of the mudstone mineral composition, and physical and chemical properties of formations, as well as the microstructure damage variations in the rock samples caused by the physical and chemical actions when they were soaked in distilled water, solutions of different drilling fluid additives, and on-site drilling fluids. In this way, the instability forms and mechanisms of mudstone borehole walls were revealed. The results demonstrated that for the mudstone samples from the three formations, the content of clay minerals reached 34.56% on average, and they were mainly composed of mixed illite/smectite and illite, which all had strong hydration of spontaneous capillary imbibition. Due to different fabric characteristics, there was a great difference in the micro-fission expansion, fission process, and fracture mode and degree of hydration damage. The fission expansion process determined the trend and strength of secondary fractures, which further decided the macroscopic instability forms of mudstone borehole walls were mainly sheet stripping and falling block collapse. The mechanisms of various test fluids inhibiting the hydration of mudstone differed, and their effects also demonstrated significant differences. Hence, effectively controlling or inhibiting the intrusion of water molecules was the key to preventing the hydration of mudstone. The analysis suggests that the digital imaging analysis technology has great advantages in evaluating borehole wall instability regarding the intuitive characterization, quantitative description, and comparative analysis of the microstructure damage to the rock samples. The revealed instability forms and mechanisms of mudstone borehole walls provide a scientific basis for the optimal selection of drilling fluid additives and the formula of the drilling fluid system for Songnan Gas Field.

  • 图  1   泥岩岩样的形貌

    Figure  1.   Morphology of mudstone rock sample

    图  2   泥岩岩样二维CT图像

    Figure  2.   2D CT image of mudstone rock sample

    图  3   青山口组泥岩岩样在蒸馏水中浸泡不同时间后的微观结构

    Figure  3.   Microstructure of mudstone rock samples from Qingshankou Formation after soaking in distilled water for different times

    图  4   青山口组泥岩岩样内部蒸馏水沿微裂缝的扩展情况

    Figure  4.   Distilled water spreading along microfractures in mudstone rock samples from Qingshankou Formation

    图  5   泉头组泥岩岩样在蒸馏水中浸泡不同时间后的微观结构

    Figure  5.   Microstructure of mudstone rock samples from Quantou Formation after soaking in distilled water for different times

    图  6   泉头组泥岩岩样次生裂缝扩展及缝宽变化情况

    Figure  6.   Secondary fracture propagation and changes in fracture width of mudstone rock samples from Quantou Formation

    图  7   登娄库组泥岩岩样在蒸馏水中浸泡不同时间后的结构

    Figure  7.   Structure of mudstone rock samples from Denglouku Formation after soaking in distilled water for different times

    图  8   登娄库组泥岩岩样次生裂缝扩展及缝宽变化情况

    Figure  8.   Secondary fracture propagation and changes in fracture width of mudstone rock samples from Denglouku Formation

    图  9   不同地层泥岩岩样在6.0%KCl中浸泡30 min后的微观结构

    Figure  9.   Microstructure of mudstone samples from different formations after immersion in 6.0% KCl for 30 min

    图  10   泉头组泥岩岩样在不同液体浸泡60 min后的次生裂缝扩展及缝宽

    Figure  10.   Secondary fracture propagation and fracture width of mudstone samples from Quantou Formation after immersion in different fluids for 60 min

    图  11   泉头组和登娄库组泥岩岩样在0.5%KPAM中浸泡30 min前后的微观结构

    Figure  11.   Microstructure of mudstone samples from Quantou Formation and Denglouku Formation before and after immersion in 0.5% KPAM for 30 min

    图  12   泉头组和登娄库组泥岩岩样在1.0%胺基聚醇中浸泡60 min前后的微观结构

    Figure  12.   Microstructure of mudstone samples from Quantou Formation and Denglouku Formation before and after immersion in 1.0% aminopolyalcohol for 60 min

    图  13   泥岩岩样在钻井液及滤液中浸泡3 min后的微观结构

    Figure  13.   Microstructure of mudstone rock sample after immersion in drilling fluid and filtrate for 3 min

    图  14   泥岩岩样在钻井液中浸泡3 min后的局部微观结构及次生裂缝发育情况

    Figure  14.   Local microstructure and secondary fracture development of mudstone rock sample after immersion in drilling fluid for 3 min

    图  15   不同溶液浸泡后泉头组泥岩岩样内部次生裂缝缝宽和孔隙率的变化情况

    Figure  15.   Changes of secondary fracture width and porosity in mudstone rock samples from Quantou Formation after immersion in different solutions

    图  16   不同溶液浸泡后登娄库组岩样内部次生裂缝缝宽和孔隙率的变化情况

    Figure  16.   Changes of secondary fracture width and porosity in rock samples from Denglouku Formation after immersion in different solutions

    表  1   泥岩岩样全岩矿物分析结果

    Table  1   Whole-rock mineral analysis results of mudstone rock sample

    井深/m地层样品数量全岩矿物含量,%
    石英钾长石斜长石方解石白云石赤铁矿黏土矿物
    2 100青山口组2347.913.91.60.136.5
    2 799泉头组4338.82.67.310.44.036.9
    3 288登娄库组5051.66.810.60.730.3
    下载: 导出CSV

    表  2   泥岩岩样黏土矿物相对含量分析结果

    Table  2   Analysis result of relative content of clay mineral of mudstone rock sample

    井深/m地层黏土矿物相对含量,%混层比,%
    高岭石绿泥石伊利石伊/蒙混层
    2 100青山口组2.817.025.654.620.0
    2 799泉头组2.015.733.049.325.0
    3 288登娄库组0.59.144.046.426.5
    下载: 导出CSV

    表  3   泥岩岩样的线性膨胀率及滚动回收率

    Table  3   Linear expansion rate and rolling recovery rate of mudstone rock sample

    井深/m地层线性膨胀率,% 滚动回收率,%
    1 h2 h4 h8 h16 h24 h16 h32 h
    2 100青山口组0.981.533.507.659.209.2689.686.4
    2 799泉头组1.441.864.258.9012.2413.8580.072.3
    3 288登娄库组1.051.433.768.5610.2311.1285.378.6
    下载: 导出CSV
  • [1] 任宪军. 松辽盆地长岭断陷盆缘陡坡带中性火山岩相模式及其对储层的控制作用[J]. 吉林大学学报(地球科学版),2022,52(3):816–828. doi: 10.13278/j.cnki.jjuese.20210177

    REN Xianjun. Faces model of intermediate volcanic rocks in steep slope and its control on resevoirs: a case study in Changling Fault Depression, Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(3): 816–828. doi: 10.13278/j.cnki.jjuese.20210177

    [2] 刘彦学. 松南气田低密度低伤害随钻堵漏钻井液技术[J]. 钻井液与完井液,2019,36(4):442–448. doi: 10.3969/j.issn.1001-5620.2019.04.008

    LIU Yanxue. Low damage low density drilling fluid used in Songnan Gas Filed for lost circulation control while drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 442–448. doi: 10.3969/j.issn.1001-5620.2019.04.008

    [3] 李凯,何志鹏,谢建文. 数字图像技术在岩土工程中的应用综述[J]. 地质与资源,2020,29(1):106–112. doi: 10.3969/j.issn.1671-1947.2020.01.014

    LI Kai, HE Zhipeng, XIE Jianwen. The application of digital image techniques in geotechnical researches: a review[J]. Geology and Resources, 2020, 29(1): 106–112. doi: 10.3969/j.issn.1671-1947.2020.01.014

    [4] 赵建鹏,崔利凯,陈惠,等. 基于CT扫描数字岩心的岩石微观结构定量表征方法[J]. 现代地质,2020,34(6):1205–1213.

    ZHAO Jianpeng, CUI Likai, CHEN Hui, et al. Quantitative characterization of rock microstructure of digital core based on CT scanning[J]. Geoscience, 2020, 34(6): 1205–1213.

    [5] 盛军,杨晓菁,李纲,等. 基于多尺度X-CT成像的数字岩心技术在碳酸盐岩储层微观孔隙结构研究中的应用[J]. 现代地质,2019,33(3):653–661.

    SHENG Jun, YANG Xiaojing, LI Gang, et al. Application of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs[J]. Geoscience, 2019, 33(3): 653–661.

    [6] 刘锟. 硬脆性页岩水化控制方法研究[D]. 成都: 西南石油大学, 2014.

    LIU Kun. Study on hydration control method of hard brittle shale[D]. Chengdu: Southwest Petroleum University, 2014.

    [7] 冯文凯,黄润秋,许强. 岩石的微观结构特征与其力学行为启示[J]. 水土保持研究,2009,16(6):26–29.

    FENG Wenkai, HUANG Runqiu, XU Qiang. The enlightenment of microstructure characteristic and mechanical behavior of rock[J]. Research of Soil and Water Conservation, 2009, 16(6): 26–29.

    [8] 石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137–142. doi: 10.7623/syxb201201020

    SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1): 137–142. doi: 10.7623/syxb201201020

    [9] 程志林,隋微波,宁正福,等. 数字岩芯微观结构特征及其对岩石力学性能的影响研究[J]. 岩石力学与工程学报,2018,37(2):449–460. doi: 10.13722/j.cnki.jrme.2017.1122

    CHENG Zhilin, SUI Weibo, NING Zhengfu, et al. Microstructure characteristics and its effects on mechanical properties of digital core[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 449–460. doi: 10.13722/j.cnki.jrme.2017.1122

    [10] 薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1075–1081. doi: 10.11698/PED.2018.06.16

    XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075–1081. doi: 10.11698/PED.2018.06.16

    [11] 叶洪涛. 页岩储层自发渗吸特征及影响因素研究[D]. 北京: 中国石油大学(北京), 2019.

    YE Hongtao. Study on characteristics and influencing factors of spontaneous imbibition of shale[D]. Beijing: China University of Petroleum(Beijing), 2019.

    [12] 黄睿哲,姜振学,高之业,等. 页岩储层组构特征对自发渗吸的影响[J]. 油气地质与采收率,2017,24(1):111–115.

    HUANG Ruizhe, JIANG Zhenxue, GAO Zhiye, et al. Effect of composition and structural characteristics on spontaneous imbibition of shale reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 111–115.

    [13] 徐先国,张歧安. 新型胺基聚醇防塌剂研究[J]. 钻采工艺,2010,33(1):93–95. doi: 10.3969/j.issn.1006-768X.2010.01.030

    XU Xianguo, ZHANG Qi’an. Research on new amine polymeric alcohol anti-sloughing agent[J]. Drilling & Production Technology, 2010, 33(1): 93–95. doi: 10.3969/j.issn.1006-768X.2010.01.030

    [14]

    ZHUANG Li, KIM K Y, JUNG S G, et al. Effect of water infiltration, injection rate and anisotropy on hydraulic fracturing behavior of granite[J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 575–589. doi: 10.1007/s00603-018-1431-3

    [15]

    ZHANG Shifeng, SHENG J J. Study of the propagation of hydration-induced fractures in mancos shale using computerized tomography[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95: 1–7. doi: 10.1016/j.ijrmms.2017.03.011

    [16] 王泽云,刘立,刘保县. 岩石微结构与微裂纹的损伤演化特征[J]. 岩石力学与工程学报,2004,23(10):1599–1603. doi: 10.3321/j.issn:1000-6915.2004.10.002

    WANG Zeyun, LIU Li, LIU Baoxian. Characteristics of damage evolution of micropore and microcrack in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(10): 1599–1603. doi: 10.3321/j.issn:1000-6915.2004.10.002

    [17] 石秉忠,夏柏如. 硬脆性泥页岩水化过程的微观结构变化[J]. 大庆石油学院学报,2011,35(6):28–34.

    SHI Bingzhong, XIA Bairu. The variation of microstructures in the hard brittle shale hydration process[J]. Journal of Daqing Petroleum Institute, 2011, 35(6): 28–34.

    [18] 杨成祥,宋磊博,王刚,等. CT 实时观察下泥岩遇水软化过程的机理[J]. 东北大学学报(自然科学版),2015,36(10):1461–1465. doi: 10.12068/j.issn.1005-3026.2015.10.021

    YANG Chengxiang, SONG Leibo, WANG Gang, et al. Mechanism of water-weakening process of mudrock observed using real-time CT[J]. Journal of Northeastern University(Natural Science), 2015, 36(10): 1461–1465. doi: 10.12068/j.issn.1005-3026.2015.10.021

  • 期刊类型引用(2)

    1. 杨文景,史宏江,潘兴明,路一平,王志国. 耐磨集成测井电极优化设计. 石油矿场机械. 2024(03): 48-53 . 百度学术
    2. 曾祥安,朱丹丹,周昊,徐朝晖. 基于特征融合的微电阻率成像测井空白带无监督填充方法. 电子测量技术. 2024(08): 171-180 . 百度学术

    其他类型引用(0)

图(16)  /  表(3)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  151
  • PDF下载量:  96
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-01-16
  • 修回日期:  2022-12-07
  • 网络出版日期:  2023-01-02
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回