济阳坳陷页岩油多层立体开发关键工程技术

袁建强

袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023, 51(1):1-8. DOI: 10.11911/syztjs.2023001
引用本文: 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023, 51(1):1-8. DOI: 10.11911/syztjs.2023001
YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression [J]. Petroleum Drilling Techniques,2023, 51(1):1-8. DOI: 10.11911/syztjs.2023001
Citation: YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression [J]. Petroleum Drilling Techniques,2023, 51(1):1-8. DOI: 10.11911/syztjs.2023001

济阳坳陷页岩油多层立体开发关键工程技术

基金项目: 中国石化十条龙项目“东营凹陷页岩油钻完井提速提效技术研究”(编号:P21060-3)、中石化石油工程公司重大项目“胜利油区页岩油开发工程关键技术研究”(编号:SG2103)联合资助
详细信息
    作者简介:

    袁建强(1963—),男,湖南长沙人,1985年毕业于江汉石油学院钻井工程专业,1992年获石油大学(北京)油气井工程专业硕士学位,2010年获中国地质大学(武汉)矿产普查与勘探专业博士学位,正高级工程师,主要从事石油工程技术研究与管理工作。系本刊编委会副主任。E-mail:yuanjq.os@sinopec.com。

  • 中图分类号: TE34;TE37

Key Engineering Technologies for Three-Dimensional Development of Multiple Formations of Shale Oil in Jiyang Depression

  • 摘要:

    济阳坳陷页岩油复杂的工程地质条件导致钻井周期长、复杂时效高、固井质量难控制和压裂施工难度大等问题突出。为解决以上工程技术问题,通过技术攻关和技术集成,形成了包括多层立体开发钻井工程设计、钻井提速提效技术、钻井液抗页岩油污染技术、水平段固井技术和高效增产压裂技术的页岩油多层立体开发关键工程技术。FY先导示范井组应用了页岩油多层立体开发关键工程技术,该井组8口井的平均钻井周期59.58 d、平均钻完井周期69.95 d,复杂时效较未应用该技术前降低51%,且顺利完成252段的压裂施工。研究与现场应用结果表明,页岩油多层立体开发关键工程技术能解决济阳坳陷页岩油立体开发存在的技术难点,使济阳坳陷页岩油立体开发工程技术水平得到提高,为济阳坳陷页岩油资源的有效开发提供了工程技术支撑。

    Abstract:

    The complex engineering geological conditions of shale oil in Jiyang Depression lead to some pro-minent problems, such as a long drilling cycle, high complex time efficiency, and difficulties in controlling cementing quality and fracturing. In response to them, key engineering technologies for the three-dimensional development of multiple formations of shale oil reservoir were developed through technology research and integration, including drilling engineering design for three-dimensional development in multiple formations, technologies for improving drilling speed and efficiency, technologies of preventing drilling fluids from pollution by shale oil, cementing technologies for horizontal sections, and fracturing technologies for high-efficiency stimulation. These key technologies were applied in the FY pilot demonstration well group. The average drilling cycle of eight wells in the group was 59.58 d, and the average completion period was 69.95 d. The complex time efficiency was decreased by 51% compared with that before the application of these technologies, and 252 sections were fractured successfully. The results of research and field application demonstrated that the series of technologies can tackle the technical problems in the three-dimensional development of multiple formations shale oil in Jiyang Depression and improve the relevant technical level, providing engineering and technical support for the effective development of shale oil resources in Jiyang Depression.

  • 图  1   多层立体井网示意

    Figure  1.   Three-dimensional well pattern in multiple formations

    图  2   造斜点优化原则示意

    Figure  2.   Optimization principle of kick-off point

    图  3   方位优化原则示意

    Figure  3.   Optimization principle of azimuth

    图  4   穿砾石PDC钻头

    Figure  4.   PDC bit for penetrating gravel

    图  5   定向混合钻头

    Figure  5.   Directional hybrid bit

    表  1   不同偏移距的井眼轨道参数

    Table  1   Well trajectory parameters under different offsets

    井序号轨道序号偏移距/m方位角变化/(°)完钻井深/m技术套管下深/m稳斜段井斜角/(°)结论
    第1口006 182.063 4077.7
    第3口30060.416 216.793 43215.0
    第5口60074.426 318.163 50027.0
    第7口90079.786 475.573 60438.0不推荐
    第9口1 20082.566 674.363 73147.0不推荐
    下载: 导出CSV

    表  2   不同偏移距下的摩阻扭矩

    Table  2   Friction and torque under different offsets

    井眼轨道
    序号
    偏移
    距/m
    方位角
    变化/(°)
    完钻井深/
    m
    滑动钻进
    摩阻/kN
    旋转钻进
    扭矩/(kN·m)
    006 182.0641824.3
    30060.416 216.7942225.8
    60074.426 318.1644527.8
    90079.786 475.5747429.5
    1 20082.566 674.3650130.7
    下载: 导出CSV

    表  3   济阳坳陷页岩油的物理性质

    Table  3   Physical properties of shale oil in Jiyang Depression

    井号20 ℃密度/
    (kg·L−1
    50 ℃黏度/
    (mPa·s)
    凝点/
    含蜡
    量,%
    胶质含
    量,%
    沥青质
    含量,%
    NY1-1HF0.8510.33425.814.101.70
    NY 1-2HF0.8616.03124.610.801.90
    FY1-7HF0.8526.13212.98.845.91
    下载: 导出CSV

    表  4   合成基钻井液页岩油侵入后的流变性

    Table  4   Rheology of synthetic-based drilling fluid invaded by shale oil

    原油侵
    入量,%
    是否加入
    降黏剂
    温度/
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切
    力/Pa
    静切
    力/Pa
    破乳电
    压/V
    6095.08015.07.0/15.01 281
    206068.05810.06.5/11.01 426
    25106.08224.010.0/13.51 450
    406050.0455.02.5/6.51 502
    25145.011827.014.0/18.01 490
    402597.58215.56.0/10.01 337
    下载: 导出CSV

    表  5   高效驱油冲洗隔离液与水泥浆、钻井液的相容性试验结果

    Table  5   Compatibility of flushing spacer for high-efficiency oil displacement with cement slurry and drilling fluid

    水泥浆占比,%隔离液占比,%钻井液占比,%稠化时间/min
    255025360 min未稠化
    502525360 min未稠化
    252550360 min未稠化
    下载: 导出CSV
  • [1] 赖富强,李仕超,王敏,等. 济阳坳陷页岩油储层矿物组分最优化反演方法[J]. 特种油气藏,2022,29(2):16–23. doi: 10.3969/j.isssn.1006-6535.2022.02.003

    LAI Fuqiang, LI Shichao, WANG Min, et al. Optimal retrieval method for mineral constituents of shale oil reservoirs in Jiyang Sag[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 16–23. doi: 10.3969/j.isssn.1006-6535.2022.02.003

    [2] 马永生,蔡勋育,赵培荣,等. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报,2022,96(1):155–171. doi: 10.3969/j.issn.0001-5717.2022.01.013

    MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica, 2022, 96(1): 155–171. doi: 10.3969/j.issn.0001-5717.2022.01.013

    [3] 刘惠民. 济阳坳陷页岩油勘探实践与前景展望[J]. 中国石油勘探,2022,27(1):73–87. doi: 10.3969/j.issn.1672-7703.2022.01.007

    LIU Huimin. Exploration practice and prospect of shale oil in Jiyang Depression[J]. China Petroleum Exploration, 2022, 27(1): 73–87. doi: 10.3969/j.issn.1672-7703.2022.01.007

    [4] 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率,2019,26(1):1–12. doi: 10.13673/j.cnki.cn37-1359/te.2019.01.001

    SONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1–12. doi: 10.13673/j.cnki.cn37-1359/te.2019.01.001

    [5] 张瀚之,翟晓鹏,楼一珊. 中国陆相页岩油钻井技术发展现状与前景展望[J]. 石油钻采工艺,2019,41(3):265–271. doi: 10.13639/j.odpt.2019.03.001

    ZHANG Hanzhi, ZHAI Xiaopeng, LOU Yishan. Development status and prospect of the drilling technologies used for continental shale oil reservoirs in China[J]. Oil Drilling & Production Technology, 2019, 41(3): 265–271. doi: 10.13639/j.odpt.2019.03.001

    [6] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072

    ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072

    [7] 刘合,匡立春,李国欣,等. 中国陆相页岩油完井方式优选的思考与建议[J]. 石油学报,2020,41(4):489–496. doi: 10.7623/syxb202004011

    Liu He, Kuang Lichun, Li Guoxin, et al. Considerations and suggestions on optimizing completion methods of continental shale oil in China[J]. Acta Petrolei Sinica, 2020, 41(4): 489–496. doi: 10.7623/syxb202004011

    [8] 李鹏飞,张晨,孙新浩,等. 吉木萨尔页岩油水平井优快钻完井技术[J]. 西部探矿工程,2021,33(10):101–104. doi: 10.3969/j.issn.1004-5716.2021.10.035

    LI Pengfei, ZHANG Chen, SUN Xinhao, et al. Fast drilling and completion technology for horizontal wells in Jimsar shale oil[J]. West-China Exploration Engineering, 2021, 33(10): 101–104. doi: 10.3969/j.issn.1004-5716.2021.10.035

    [9] 韩来聚,杨春旭. 济阳坳陷页岩油水平井钻井完井关键技术[J]. 石油钻探技术,2021,49(4):22–28. doi: 10.11911/syztjs.2021073

    HAN Laiju, YANG Chunxu. Key technologies for drilling and completion of horizontal shale oil wells in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 22–28. doi: 10.11911/syztjs.2021073

    [10] 赵波,陈二丁. 胜利油田页岩油水平井樊页平1井钻井技术[J]. 石油钻探技术,2021,49(4):53–58. doi: 10.11911/syztjs.2021078

    ZHAO Bo, CHEN Erding. Drilling technologies for horizontal shale oil well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53–58. doi: 10.11911/syztjs.2021078

    [11] 刘天恩,张海军,袁光杰,等. 沧东凹陷页岩油水平井优快钻井技术[J]. 石油钻探技术,2021,49(4):46–52. doi: 10.11911/syztjs.2020127

    LIU Tianen, ZHANG Haijun, YUAN Guangjie, et al. Optimized and fast drilling technologies for horizontal shale oil wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 46–52. doi: 10.11911/syztjs.2020127

    [12] 高爱庭. 新疆油田吉木萨尔页岩油区块优快钻井技术[J]. 江汉石油职工大学学报,2021,34(1):44–46. doi: 10.3969/j.issn.1009-301X.2021.01.014

    GAO Aiting. Optimized drilling technology in Jimusar shale oil block of Xinjiang Oilfield[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2021, 34(1): 44–46. doi: 10.3969/j.issn.1009-301X.2021.01.014

    [13] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036

    YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036

    [14] 倪华峰,杨光,张延兵. 长庆油田页岩油大井丛水平井钻井提速技术[J]. 石油钻探技术,2021,49(4):29–33. doi: 10.11911/syztjs.2021076

    NI Huafeng, YANG Guang, ZHANG Yanbing. ROP improvement technologies for large-cluster horizontal shale oil wells in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 29–33. doi: 10.11911/syztjs.2021076

    [15] 于坤,车健. 大庆油田古龙页岩油钻井液技术研究与应用[J]. 钻井液与完井夜,2021,38(3):311–316. doi: 10.3969/j.issn.1001-5620.2021.03.008

    YU Kun, CHE Jian. Drilling fluid technology for shale oil exploration and development in Daqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 311–316. doi: 10.3969/j.issn.1001-5620.2021.03.008

    [16] 唐代绪,侯业贵,高杨,等. 胜利油田页岩油水平井钻井液技术[J]. 石油钻采工艺,2012,34(5):45–48. doi: 10.3969/j.issn.1000-7393.2012.05.012

    TANG Daixu, HOU Yegui, GAO Yang, et al. Drilling fluid study on horizontal wells for shale oil reservoirs in Shengli Oilfield[J]. Oil Drilling & Production Technology, 2012, 34(5): 45–48. doi: 10.3969/j.issn.1000-7393.2012.05.012

    [17] 何立成. 胜利油田沙河街组页岩油水平井固井技术[J]. 石油钻探技术,2022,50(2):45–50. doi: 10.11911/syztjs.2022062

    HE Licheng. A cementing technology for horizontal shale oil wells in Shahejie Formation of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 45–50. doi: 10.11911/syztjs.2022062

    [18] 李小林, 吴朝明,赵殊勋, 等. 大港油田页岩油储层固井技术研究与应用[J]. 钻井液与完井液,2020,37(2):232–238. doi: 10.3969/j.issn.1001-5620.2020.02.017

    LI Xiaolin, WU Chaoming,ZHAO Shuxun, et al. Technology for cementing shale oil reservoirs in Dagang Oilfield: study and application[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 232–238. doi: 10.3969/j.issn.1001-5620.2020.02.017

    [19] 孟勇,贾庆升,张潦源,等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术,2021,49(4):130–138. doi: 10.11911/syztjs.2021094

    MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130–138. doi: 10.11911/syztjs.2021094

    [20] 章敬. 非常规油藏地质工程一体化效益开发实践:以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J]. 断块油气田,2021,28(2):151–155. doi: 10.6056/dkyqt202102002

    ZHANG Jing. Effective development practices of geology-engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 151–155. doi: 10.6056/dkyqt202102002

    [21] 朱海燕,徐鑫勤,钟安海. 深层页岩油水平井密切割裂缝均衡扩展数值模拟:以胜利油田YYP1井为例[J]. 石油与天然气地质,2022,43(1):229–240. doi: 10.11743/ogg20220119

    ZHU Haiyan, XU Xinqin, ZHONG Anhai, et al. Numerical simulation of evenly propagating hydraulic fractures with smaller cluster spacing in the horizontal well YYP1 for deep shale oil in the Shengli Oilfield[J]. Oil & Gas Geology, 2022, 43(1): 229–240. doi: 10.11743/ogg20220119

    [22] 崔壮,侯冰,,付世豪,等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田,2022,29(1):111–117. doi: 10.6056/dkyqt202201019

    CUI Zhuang, HOU Bing, FU Shihao, et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 111–117. doi: 10.6056/dkyqt202201019

  • 期刊类型引用(4)

    1. 李昂,杨万有,郑春峰,沈琼,赵景辉,薛德栋. 海上油田采油技术创新实践及发展方向. 石油钻探技术. 2024(06): 75-85 . 本站查看
    2. 杨阳,曹砚锋,于继飞,邢希金,杜孝友. 基于等级加权法的油田注水水质优选方法. 西安石油大学学报(自然科学版). 2019(02): 99-103 . 百度学术
    3. 魏永祥,刘俊刚,陈敏,关野,王晓明,步万荣. 电潜泵提液采油配套技术的应用. 价值工程. 2018(32): 246-247 . 百度学术
    4. 郭志辉,秦丙林,陆国琛,李乾,王颖. WZ油田人工举升方式优选研究. 海洋石油. 2018(04): 45-51 . 百度学术

    其他类型引用(1)

图(5)  /  表(5)
计量
  • 文章访问数:  602
  • HTML全文浏览量:  174
  • PDF下载量:  244
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-09-26
  • 修回日期:  2022-12-05
  • 网络出版日期:  2022-12-30
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回