The Study on Decarbonization Pathway and Structural Transformation of Oil Companies in China
-
摘要:
2015年,《巴黎协定》提出本世纪末全球平均气温较工业化前水平上升幅度控制在2 ℃之内,为积极应对气候变化,我国政府提出了“2030碳达峰,2060碳中和”的目标,但低碳运行下的经济体转型仍面临严峻挑战。为此,基于碳市场、碳交易与碳政策的现状,利用数据挖掘和人工智能数据分析,对全球CO2排放现状和“双碳”目标下国际油气公司的能源转型举措进行了调研分析,并基于我国碳排放及油气领域实用“脱碳”技术现状,给出了我国“脱碳”路径的4项建议,包括推广低碳新材料和新技术、推行通用碳市场标准、制定绿色转型企业保护性政策和激励低碳研发等,提出了我国油公司能源转型的5个关键方向,包括加速低碳化油气勘探开发、开展碳足迹全链评价、推进页岩气智能集约开发、加快氢能技术和CCUS技术研发等。这对我国双碳目标的实现和油公司的顺利转型具有一定的指导意义。
Abstract:The 2015 Paris Agreement proposed that the global average temperature rise by the end of the century should be controlled within 2 ℃ above pre-industrial levels. In order to actively respond to climate change, the Chinese government has put forward the goal of “carbon peaking by 2030 and carbon neutrality by 2060”. However, the economic transformation under low-carbon operation still faces severe challenges. In this regard, based on the carbon market, carbon trading and carbon policy, the status of global CO2 emissions and the energy transformation measures taken by international oil and gas companies for the dual carbon goal were investigated and analyzed with data mining and artificial intelligence data analysis. Based on the status of carbon emission in China and the practical decarbonization technologies in the oil and gas field, four key recommendations for decarbonization pathways were put forward, including popularizing new low-carbon material and technologies, promoting general carbon market standards, formulating protective policies for green transformation enterprises, and encouraging low-carbon research and development. What's more, five key areas for the energy transformation of oil companies in China were proposed, which are accelerating low-carbon development and exploration of oil and gas, carrying out carbon footprint full-chain evaluation, promoting intelligent and intensive development of shale gas, expediting research and development of hydrogen energy and CCUS technology. The research results can provide a valuable reference for the achievement of the dual carbon goal and the smooth transformation of oil companies.
-
-
表 1 不同国际油气公司的能源转型策略及主要指标
Table 1 Main indicators and transformation strategies of different international oil companies
公司 主要指标 BP 2025年,油气生产的CH4排放强度下降到0.2%
2030年,运营所产生的碳排放在2019年基础上减少30%~35%,产品碳强度在2019年的基础上降低15%
2050年或之前,成为净零排放公司,上游油气产品排放达到净零,产品碳排放强度降低50% (全生命周期)壳牌 2025年,油气生产的CH4排放强度下降到0.2%
2035年,能源产品碳足迹将比2016年减少30%
2050年或更早实现能源业务净零排放,产品制造过程实现净零排, 协助客户使用壳牌能源产品实现净零排放,能源产品碳足迹减少65%雷普索尔 2016年为基准,到2025年碳排放强度下降10%,以炼油为主的工业领域直接排放减少25%,低碳发电领域增加至7.5 GW
2030年碳排放强度下降20%,2040年下降40%, 2050年实现净零排放挪威国家石油 2026年可再生能源产能提高10倍,达到4~6 GW
2030年挪威地区油气生产过程中的排放量降低40%,消除常规火炬,实现CH4净零排放
2035年可再生能源产能增加至12~16 GW,发展成为全球海上风电产业巨头
2040年挪威地区油气生产过程中的排放量降低70%
2050年碳排放强度降低50%,挪威地区油气生产过程实现零排放道达尔 2025年CH4排放强度控制在0.2%以下
2030年全球生产和能源产品碳排放强度降至15%
2050年或之前,在全球范围内实现净零排放 -
[1] BATAILLE C, ÅHMAN M, NEUHOFF K, et al. A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement[J]. Journal of Cleaner Production, 2018, 187: 960–973. doi: 10.1016/j.jclepro.2018.03.107
[2] GOULDER L H, HAFSTEAD M A C, DWORSKY M. Impacts of alternative emissions allowance allocation methods under a federal cap-and-trade program[J]. Journal of Environmental Economics and Management, 2010, 60(3): 161–181. doi: 10.1016/j.jeem.2010.06.002
[3] LAMB W F, WIEDMANN T, PONGRATZ J, et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018[J]. Environmental Research Letters, 2021, 16(7): 073005. doi: 10.1088/1748-9326/abee4e
[4] ABRAHAM-DUKUMA M C. Dirty to clean energy: Exploring ‘oil and gas majors transitioning’[J]. The Extractive Industries and Society, 2021, 8(3): 100936. doi: 10.1016/j.exis.2021.100936
[5] HARTMANN J, INKPEN A C, RAMASWAMY K. Different shades of green: global oil and gas companies and renewable energy[J]. Journal of International Business Studies, 2021, 52(5): 879–903. doi: 10.1057/s41267-020-00326-w
[6] WEN Huwei, LEE C C, ZHOU Fengxiu. Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises[J]. Energy Economics, 2021, 94: 105099. doi: 10.1016/j.eneco.2021.105099
[7] FLAKSMAN A S, KOKURIN D I, KHODZHAEV D K, et al. Assessment of prospects and directions of digital transformation of oil and gas companies[J]. IOP Conference Series: Materials Science and Engineering, 2020, 976: 012036. doi: 10.1088/1757-899X/976/1/012036
[8] MIKOVA N, EICHHAMMER W, PFLUGER B. Low-carbon energy scenarios 2050 in north-west European countries: towards a more harmonised approach to achieve the EU targets[J]. Energy Policy, 2019, 130: 448–460. doi: 10.1016/j.enpol.2019.03.047
[9] 张蒙丽,岳小文. 国际石油公司发展新能源业务的启示[J]. 国际石油经济,2019,27(4):66–70. doi: 10.3969/j.issn.1004-7298.2019.04.008 ZHANG Mengli, YUE Xiaowen. Enlightenments of new energy business development in the international oil companies[J]. International Petroleum Economics, 2019, 27(4): 66–70. doi: 10.3969/j.issn.1004-7298.2019.04.008
[10] ROMERO J P, GRAMKOW C. Economic complexity and greenhouse gas emissions[J]. World Development, 2021, 139: 105317. doi: 10.1016/j.worlddev.2020.105317
[11] 王敏生,光新军,耿黎东. 人工智能在钻井工程中的应用现状与发展建议[J]. 石油钻采工艺,2021,43(4):420–427. WANG Minsheng, GUANG Xinjun, GENG Lidong. Application status and development suggestions of artificial intelligence in drilling engineering[J]. Oil Drilling & Production Technology, 2021, 43(4): 420–427.
[12] 窦宏恩,张蕾,米兰,等. 人工智能在全球油气工业领域的应用现状与前景展望[J]. 石油钻采工艺,2021,43(4):405–419. DOU Hongen, ZHANG Lei, MI Lan, et al. The application status and prospect of artificial intelligence in the global oil and gas industry[J]. Oil Drilling & Production Technology, 2021, 43(4): 405–419.
[13] 杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. doi: 10.11911/syztjs.2020136 YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13. doi: 10.11911/syztjs.2020136
[14] 王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6. doi: 10.11911/syztjs.2021070 WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6. doi: 10.11911/syztjs.2021070
[15] DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): eaas9793. doi: 10.1126/science.aas9793
[16] 柏明星,张志超,白华明,等. 二氧化碳地质封存系统泄漏风险研究进展[J]. 特种油气藏,2022,29(4):1–11. BAI Mingxing, ZHANG Zhichao, BAI Huaming, et al. Progress in leakage risk study of CO2 geosequestration system[J]. Special Oil & Gas Reservioirs, 2022, 29(4): 1–11.
[17] 高冉,吕成远,伦增珉,等. 二氧化碳驱替与埋存一体化数值模拟[J]. 特种油气藏,2021,28(2):102–107. GAO Ran, LYU Chengyuan, LUN Zengmin, et al. Integrated numerical simulation of carbon dioxide displacement and sequestration[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 102–107.
[18] MENG Xiangyu, GU Alun, WU Xinguo, et al. Status quo of China hydrogen strategy in the field of transportation and international comparisons[J]. International Journal of Hydrogen Energy, 2021, 46(57): 28887–28899. doi: 10.1016/j.ijhydene.2020.11.049
[19] LU Jun, ZAHEDI A, YANG Chengshi, et al. Building the hydrogen economy in China: Drivers, resources and technologies[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 543–556. doi: 10.1016/j.rser.2013.02.042
[20] BUIRA D, TOVILLA J, FARBES J, et al. A whole-economy deep decarbonization pathway for Mexico[J]. Energy Strategy Reviews, 2021, 33: 100578. doi: 10.1016/j.esr.2020.100578
[21] HASAN M M F, FIRST E L, BOUKOUVALA F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU[J]. Computers & Chemical Engineering, 2015, 81: 2–21.
[22] REN Xusheng, DONG Lichun, XU Di, et al. Challenges towards hydrogen economy in China[J]. International Journal of Hydrogen Energy, 2020, 45(59): 34326–34345. doi: 10.1016/j.ijhydene.2020.01.163
[23] 蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21. doi: 10.11911/syztjs.2021071 JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21. doi: 10.11911/syztjs.2021071
[24] 苗娟,何旭晟,王栋,等. 水平井精细分段深度酸化压裂技术研究与应用[J]. 特种油气藏,2022,29(2):141–148. MIAO Juan, HE Xusheng, WANG Dong, et al. Study and application of fine segmented deep acid fracturing technology for horizontal wells[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 141–148.
[25] LIAO Lulu, ZENG Yijin, LIANG Yu, et al. Data mining: a novel strategy for production forecast in tight hydrocarbon resource in Canada by random forest analysis[R]. IPTC-20344-MS, 2020.
[26] 陈作,刘红磊,李英杰,等. 国内外页岩油储层改造技术现状及发展建议[J]. 石油钻探技术,2021,49(4):1–7. doi: 10.11911/syztjs.2021081 CHEN Zuo, LIU Honglei, LI Yingjie, et al. The current status and development suggestions for shale oil reservoir stimulation at home and abroad[J]. Petroleum Drilling Techniques, 2021, 49(4): 1–7. doi: 10.11911/syztjs.2021081
[27] 李宗田,肖勇,李宁,等. 低油价下的页岩油气开发工程技术新进展[J]. 断块油气田,2021,28(5):577–585. LI Zongtian, XIAO Yong, LI Ning, et al. New progress in shale oil and gas development engineering technology under low oil pri-ces[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 577–585.
-
期刊类型引用(5)
1. 李春,闵忠顺,何海燕,刘洁,屠坤,吴海涛. 国内地下储气库库址变化新趋势与发展建议. 石油钻探技术. 2024(03): 153-158 . 本站查看
2. 李春新,殷冬青,唐旭伟,王超,温舒涵,郑悦冰. 新形势下中国石油企业建设综合性能源公司的发展路径和对策. 国际石油经济. 2024(S1): 22-27 . 百度学术
3. 李劼. 中国油气企业电力业务发展策略. 世界石油工业. 2024(05): 10-18 . 百度学术
4. 黄亮,冯鑫霓,杨琴,吴建发,杨学锋,黄山. 深层页岩干酪根纳米孔隙中甲烷微观赋存特征. 石油钻探技术. 2023(05): 112-120 . 本站查看
5. 方雪昀. 传统能源企业向清洁能源转型的驱动因素与策略研究. 商讯. 2023(24): 29-32 . 百度学术
其他类型引用(2)