高温高压储层“光油管”试油压裂一体化工艺

陈超峰, 张一军, 李强, 杨晓儒, 陈锐, 杜宗和

陈超峰,张一军,李强,等. 高温高压储层“光油管”试油压裂一体化工艺[J]. 石油钻探技术,2023, 51(3):113-118. DOI: 10.11911/syztjs.2022117
引用本文: 陈超峰,张一军,李强,等. 高温高压储层“光油管”试油压裂一体化工艺[J]. 石油钻探技术,2023, 51(3):113-118. DOI: 10.11911/syztjs.2022117
CHEN Chaofeng, ZHANG Yijun, LI Qiang, et al. Integrated technology of bare tubing oil testing and fracturing in high-temperature and high-pressure reservoirs [J]. Petroleum Drilling Techniques,2023, 51(3):113-118. DOI: 10.11911/syztjs.2022117
Citation: CHEN Chaofeng, ZHANG Yijun, LI Qiang, et al. Integrated technology of bare tubing oil testing and fracturing in high-temperature and high-pressure reservoirs [J]. Petroleum Drilling Techniques,2023, 51(3):113-118. DOI: 10.11911/syztjs.2022117

高温高压储层“光油管”试油压裂一体化工艺

详细信息
    作者简介:

    陈超峰(1971—),男,河南杞县人,1996年毕业于石油大学(华东)石油工程专业,高级工程师,主要从事试油技术管理工作。E-mail:ccf@petrochina.com.cn。

  • 中图分类号: TE357

Integrated Technology of Bare Tubing Oil Testing and Fracturing in High-Temperature and High-Pressure Reservoirs

  • 摘要:

    准噶尔盆地南缘西段清水河组储层埋藏深、高温、高压,基质物性差,试油与压裂改造时受到超高地层压力、超高地层破裂压力、井身结构、管柱及工具结构等因素限制,储层改造不充分。为此,基于南缘西段深层高压油井储层特点,采用环空替入加重液降套压、前置液顶替加重液防超压、油套双流程控压等技术措施,形成了“光油管”试油压裂一体化工艺,其具有降低工具失效风险、可有效监测套压和提高施工安全系数等优点。“光油管”试油压裂一体化工艺在南缘西段超深、超高压井应用了5井次,工艺实施成功率100 %,测试成功率100 %,其中高泉6井压后日产油量126.81 m3,日产气量8300 m3。该工艺有力支撑了准噶尔盆地南缘区块深井、超深井的安全高效试油、压裂,可为同类型井的应用提供借鉴与指导。

    Abstract:

    The Qingshuihe Formation in the western section of the southern margin of the Junggar Basin has reservoirs with deep burial depth, high temperature and pressure, and poor matrix physical properties. Factors such as ultra-high formation pressure, ultra-high formation fracture pressure, casing program, strings, and tool structures limit oil testing and fracturing stimulation. Therefore, according to the reservoir characteristics of deep high-pressure oil wells in the western section of the southern margin, a series of technical measures were adopted, such as reducing casing pressure by the displacement of heavy fluid into the annulus, preventing overpressure by the displacement of heavy pad fluid, and controlling pressure by oil-casing double-flow program, so as to form the integrated technology of bare tubing oil testing and fracturing. The technology has the advantages of avoiding the risk of tool failure, effectively detecting casing pressure, and allowing higher safety factors. The integrated technology of bare tubing oil testing and fracturing was applied 5 times in ultra-deep and ultra-high pressure wells in the western section of the southern margin. The success rate for implementing the technology was 100%, and the testing success rate was 100%. Specifically, Well Gaoquan 6 had a daily oil production of 126.81 m3 after fracturing, and the daily gas production was 8300 m3. This technology effectively supports the safe and efficient oil testing and fracturing of deep and ultra-deep wells in the southern margin of the Junggar Basin and provides reference and guidance for the application in similar types of wells.

  • “三高”井试油压裂工艺与常规油井不同,施工过程中由于工况苛刻易导致井下复杂,前期使用“两阀一封”试油测试工艺时存在井下工具失效、中高密度钻井液在高温条件下长时间静置易老化并堵塞管柱和埋卡封隔器等问题,为保障施工安全,研制了适用于不同井况的“三阀一封”、“四阀一封”和“五阀一封”测试管柱。

    新疆油田南缘西段深层高温高压油气井前期主要采用“三阀一封”的试油工艺,随着勘探评价逐步深入,地质条件更加复杂,必须经过压裂改造才能获得产能。2011年西湖1井压裂后RD(rupture disks)循环阀无法开启,压井困难。目前,“多阀一封”试油工艺存在封隔器失效、钢球堵塞管柱及射孔段下部替液不干净等问题[1-4]。压裂过程中泵压高,排量受限,改造不充分,因此,“多阀一封”试油工艺无法完全满足超深超高压井试油需求。为此,笔者在分析前期“三阀一封”试油工艺难点和需求的基础上,针对南缘西段高温高压低渗油井储层特点和施工作业难点,采取环空替入加重液降低施工套压和前置液顶替加重液防超压等技术措施,形成了“光油管”试油压裂一体化工艺,最大限度地实现丢枪后油管全通径,以满足压裂加砂改造需求[5-8]

    新疆油田南缘西段高泉地区白垩系清水河组以南部物源为主,储层埋藏深,地层压力130~145 MPa,地层温度140~150 ℃,基质孔隙度1.2 %~16.5 %,基质渗透率0.01~0.20 mD,岩性复杂,非均质性强,天然裂缝不同程度发育[9-11]。试油压裂的工艺难点主要包括:1)储层环境复杂。随着新疆油田南缘勘探评价加快推进,储层温度压力逐年升高,新疆油田南缘储层压力相比塔里木库车山前高出近20 MPa,严重制约试油、改造和建产;清水河组储层弹性模量高,闭合应力高,水力裂缝缝窄,加砂压裂困难,且受井身结构限制,压裂施工泵压高。2)受井身结构限制。南缘西段油井以四开井身结构为主,ϕ139.7 mm油层尾管长700~1119 m,区块标准化井身结构如图1所示,油层尾管直径及长度限制了大通径油管下深,压裂施工排量受限,区块平均施工排量3.0~4.5 m3/min,泵压高达111~129 MPa,泵压超高,施工风险高。同时,高温下密度大于2.30 kg/L试油工作液的性能难以保障,易发生测试封隔器与测试阀堵塞、工具埋卡等井下复杂,小井眼中复杂处理难度大、风险高,在超高地层压力、超高地层破裂压力(破裂压力达大于160 MPa)等综合因素影响下,南缘西段试油、压裂改造面临极大难度与风险,亟需开展工艺优化,保障施工安全[11-13]

    图  1  南缘西段井身结构示意
    Figure  1.  Casing program in the western section of the southern margin

    新疆油田南缘西段高温高压油井试油改造以降低试油成本、缩短试油周期和保障施工安全为主,前期采用“三阀一封”射孔压裂试油工艺。管柱组合为ϕ114.3 mm油管×12.7 mm×715 m+ϕ114.3 mm油管×10.9 mm×4 600 m+ϕ88.9 mm油管×9.5 mm×200 m+ϕ73.0 mm油管×7.0 mm×955 m+2号RD循环阀+1号RD循环阀+RDS阀+RTTS封隔器+存储式压力计+ϕ73.0 mm×5.5 mm 油管4根+减震器+ϕ73.0 mm×5.5 mm 油管4根+减震器+机械丢枪接头+筛管+射孔枪组。

    RDS阀、RD循环阀与RTTS封隔器内径均为38.0 mm,考虑缩径产生的节流效应,计算其在不同排量下的节流压差和施工泵压,结果如表1所示。由表1可以看出,在相同排量条件下,“三阀一封”试油管柱的施工泵压比光油管试油管柱高7.96~10.32 MPa,压裂过程中会出现排量受限、加砂难度大等问题。

    表  1  不同试油管柱节流压差与施工泵压预测
    Table  1.  Prediction of throttling differential pressure and pump pressure for different oil testing string
    排量/
    (m3∙min−1
    节流压差/
    MPa
    “光油管”施工
    泵压/MPa
    “三阀一封”管柱
    施工泵压/MPa
    2.57.96109.46117.42
    3.08.55111.96120.51
    3.59.14118.17127.31
    4.09.73125.06134.79
    4.510.32132.58142.90
    下载: 导出CSV 
    | 显示表格

    西湖1井前期试油压裂采用“三阀一封”的射孔测试联作管柱,由于受压裂冲蚀、高密度压井液和高温沉淀的影响,RDS(rupture disks safety)阀无法开启,循环压井困难、封隔器起出困难。RDS阀的结构如图2所示。

    图  2  RDS阀的结构
    Figure  2.  Structure of RDS valve

    排量4.5 m3/min、平均砂比15%、支撑剂视密度3350 kg/m3、支撑剂浓度240 kg/m3条件下,模拟计算RDS阀内部冲蚀云图如图3所示。由于RDS阀存在变径导致涡流,弹性爪根部易受冲蚀[14-16],压裂5 h,冲蚀导致RDS阀壁厚减少达11.6 mm,存在冲蚀破损或断裂导致芯轴无法下行、球阀无法关闭、循环通道无法开启的风险。因此,“三阀一封”试油工艺的适应性较差,需设计适用性更强的试油工艺。

    图  3  RDS阀冲蚀云图
    Figure  3.  RDS valve erosion cloud map

    依据南缘西段的井身结构,将试油压裂管柱设计为ϕ114.3 mm×12.7 mm油管+ϕ114.3mm×10.9 mm油管+ϕ88.9 mm×9.5 mm油管+ϕ73.02mm×7.0 mm油管+存储式压力计+ϕ73.0 mm×5.5 mm 油管4根+减震器+ϕ73.02 mm×5.5 mm 油管4根+减震器+机械丢枪接头+筛管+射孔枪组,最大限度实现大通径,丢枪后油管全通径以适应加砂压裂改造需求。试油压裂管柱所用油管的参数见表2

    表  2  南缘西段试油管柱所用油管的参数
    Table  2.  Tubing parameters used for oil testing string in the western section of the southern margin
    油管外径/
    mm
    钢级壁厚/
    mm
    内径/
    mm
    线质量/
    (kg∙m−1
    抗内压/
    MPa
    抗外压/
    MPa
    管体屈服强度/
    kN
    段长/
    m
    114.3P11012.7088.9032.14147.5149.83074715
    114.3P11010.9292.4628.13126.8131.126894600
    88.9P1109.5369.8418.90142.2145.11800200
    73.0P1107.0158.9811.61127.411.601103955
    下载: 导出CSV 
    | 显示表格

    针对南缘西段高温高压油井压裂、试油、关井等工况,采用Wellcat软件模拟计算带封隔器管柱与“光油管”管柱在相同工况条件下抗拉、抗压、抗外挤强度的三轴安全系数[17-18],结果如图4所示。

    图  4  不同排量下不同试油压裂管柱三轴安全系数
    Figure  4.  Triaxial safety factor of different oil testing fracturing string under different displacement

    1)采用带封隔器管柱时,由于封隔综合效应导致附加应力,井口及封隔器上部安全系数低。同时,为确保油管柱及封隔器安全,环空补压需达到60 MPa,才能保证三轴安全系数大于1.50,现场实施保障难度大,并且使用带封隔器的管柱,封隔器与RDS阀、RD循环阀等井下工具会造成管柱缩径,使压裂及试油过程中存在冲蚀风险。

    2)采用“光油管”管柱,相同工况条件下全井三轴安全系数大于2.00,相比于带封隔器管柱安全系数更高;若不加封隔器,则存在压裂过程中套管超压与试油作业时关井后套管超压的风险[19-21]

    “光油管”试油压裂过程中,井口处套管是整个井筒的薄弱点,计算不同工况、不同环空液体密度下的套压(见表3)。油套环空为密度1.00 kg/L清水时,压裂过程中套压95.91 MPa,压裂安全余量为3.09 MPa(套管限压99 MPa);油套环空为密度1.20 kg/L盐水时,压裂过程中套压83.08 MPa,压裂安全余量为15.92 MPa。由此可以看出,提高环空液体密度,可有效降低套压,保障压裂过程中井筒安全。综合考虑储层配伍性及成本控制,压裂前环空替入密度1.20 kg/L的KCl+NaCl复配盐水加重液,以提高井口限压。

    表  3  不同工况下的套压
    Table  3.  Casing pressure under different working conditions
    序号工况套压/
    MPa
    悬挂器位置
    压力/MPa
    油层中部
    压力/MPa
    1井筒试压
    (回接套管抗内压强度80%)
    99.00153.60163.09
    2压裂
    (环空液体密度1.00 kg/L)
    95.91150.54160.00
    3压裂
    (环空液体密度1.20 kg/L)
    83.08148.61160.00
    4压裂
    (环空液体密度1.30 kg/L)
    76.67147.64160.00
    下载: 导出CSV 
    | 显示表格

    利用Wellcat软件计算不同工况条件下油层套管的安全系数,考虑试油及生产过程中套管控压状况,油层套管抗外挤安全系数大于1.125,抗内压安全系数大于1.150,满足射孔、压裂、纯油关井等工况下的安全要求;同时,压裂前环空替入密度1.20 kg/L的盐水,纯油、纯气工况下套压最高控制在99 MPa,油层套管可满足排量3.5~4.5 m3/min的压裂要求。

    “光油管”工艺试油条件下油套连通,针对油层套管超压风险,优化设计定型了140 MPa油套管控压地面双流程,如图5所示。油管流程与套管流程分别在高压端并联、低压端并联,油气可通过油管、套管流程同时经除砂器、油嘴管汇、热交换器、分离器等装置进行生产作业,提高了生产效率,能够实现油套同时生产、套管应急泄压和正反压井,可通过地面设备保障试油全过程的井筒安全。

    图  5  油套管控压地面双流程
    Figure  5.  Tubing and casing control pressure ground dual process

    “光油管”试油压裂一体化技术先后在准噶尔盆地南缘西段应用了5井次,下面以高泉6井为例,介绍具体应用情况。高泉6井井储层埋深6530.00~6537.00 m,ϕ177.8 mm套管下深0~5560.00 m,ϕ139.7 mm套管下深5560.00~6758.27 m,地层压力144.26 MPa,破裂压力175.2 MPa,计算出A环空中为1.20 kg/L盐水时套压最高为99.00 MPa。采用ϕ114.3 mm油管+ϕ88.9 mm油管+ϕ73.0 mm油管+存储式压力计+丢枪射孔管柱进行压裂施工,优选射孔弹,增大射孔深度,降低破裂压力,管柱增加了丢枪装置,丢枪后实现管柱全通径。

    高泉 6 井压裂前采用ϕ2.0 mm油嘴试产,油压24.3 MPa,最高日产油量4.68 m3。压裂前全井筒替入密度1.20 kg/L的复配盐水,前置液阶段采用密度1.20 kg/L盐水造缝,以降低井口破裂压力,顶替液采用密度1.20 kg/L的原液,以降低顶替阶段施工泵压。施工排量3.5~4.2 m3/min,泵注过程全程高压,施工压力118.0~129.0 MPa,压力高于125.0 MPa持续时间54 min,套管压力88.0~99.0 MPa,加入高强度陶粒55 m3,平均砂比14.06 %,停泵时油压97.8 MPa、套压99.0 MPa,如图6所示。压裂后期净压力由5.0 MPa升至16.0 MPa,套压升高11.0 MPa,达到限压(99.0 MPa),环空替入加重液与环空未替入加重液相比,实际套压降低12.8 MPa,有效保障了套管柱安全,顺利完成压裂施工。

    图  6  高泉6井压裂施工曲线
    Figure  6.  Fracturing operation curve of Well Gaoquan 6

    压裂施工结束后,根据停泵压降曲线,确定停泵压力97.8 MPa,裂缝闭合时间42.7 min,压裂液效率43.6 %。拟合施工净压力,校正压裂模型,得到弹性模量20.8 GPa、泊松比0.24、储层最小水平主应力161.2 MPa,隔层最小水平主应力173.5 MPa,通过校正模型反演裂缝参数,得知形成分支裂缝2条,主裂缝半缝长226.50 m,缝高43.10 m,铺砂浓度4.76 kg/m2,压裂效果良好。停泵后,压力随时间下降加快,形成缝网范围大,与岩心地应力测试试验具备形成分支裂缝潜力的结论一致。压裂改造后,采用ϕ7.0 mm油嘴试产,油压46.32 MPa,日产油量126.81 m3,日产气量8300 m3

    1)“光油管”试油压裂一体化工艺采取环空替入加重液降低压裂施工套压、前置液顶替加重液防超压等措施,突破了高温高压井必须采用“三阀一封”试油工艺的局限。

    2)“光油管”试油压裂一体化工艺相比传统试油工艺,可有效降低试油成本,解决压裂泵压高、排量受限、测试阀冲蚀或超压失效等问题,为深层试油压裂测试创造有利条件。

    3)“光油管”试油压裂一体化工艺的成功应用,为深层高闭合应力储层改造探索了新工艺和新思路,可为高温高压超深地层试油压裂提供借鉴。

  • 图  1   南缘西段井身结构示意

    Figure  1.   Casing program in the western section of the southern margin

    图  2   RDS阀的结构

    Figure  2.   Structure of RDS valve

    图  3   RDS阀冲蚀云图

    Figure  3.   RDS valve erosion cloud map

    图  4   不同排量下不同试油压裂管柱三轴安全系数

    Figure  4.   Triaxial safety factor of different oil testing fracturing string under different displacement

    图  5   油套管控压地面双流程

    Figure  5.   Tubing and casing control pressure ground dual process

    图  6   高泉6井压裂施工曲线

    Figure  6.   Fracturing operation curve of Well Gaoquan 6

    表  1   不同试油管柱节流压差与施工泵压预测

    Table  1   Prediction of throttling differential pressure and pump pressure for different oil testing string

    排量/
    (m3∙min−1
    节流压差/
    MPa
    “光油管”施工
    泵压/MPa
    “三阀一封”管柱
    施工泵压/MPa
    2.57.96109.46117.42
    3.08.55111.96120.51
    3.59.14118.17127.31
    4.09.73125.06134.79
    4.510.32132.58142.90
    下载: 导出CSV

    表  2   南缘西段试油管柱所用油管的参数

    Table  2   Tubing parameters used for oil testing string in the western section of the southern margin

    油管外径/
    mm
    钢级壁厚/
    mm
    内径/
    mm
    线质量/
    (kg∙m−1
    抗内压/
    MPa
    抗外压/
    MPa
    管体屈服强度/
    kN
    段长/
    m
    114.3P11012.7088.9032.14147.5149.83074715
    114.3P11010.9292.4628.13126.8131.126894600
    88.9P1109.5369.8418.90142.2145.11800200
    73.0P1107.0158.9811.61127.411.601103955
    下载: 导出CSV

    表  3   不同工况下的套压

    Table  3   Casing pressure under different working conditions

    序号工况套压/
    MPa
    悬挂器位置
    压力/MPa
    油层中部
    压力/MPa
    1井筒试压
    (回接套管抗内压强度80%)
    99.00153.60163.09
    2压裂
    (环空液体密度1.00 kg/L)
    95.91150.54160.00
    3压裂
    (环空液体密度1.20 kg/L)
    83.08148.61160.00
    4压裂
    (环空液体密度1.30 kg/L)
    76.67147.64160.00
    下载: 导出CSV
  • [1] 王克林,张波,李超,等. 库车山前深层高温高压气井多封隔器分层压裂工艺[J]. 石油钻采工艺,2021,43(2):239–243.

    WANG Kelin, ZHANG Bo, LI Chao, et al. Multi-packer separate layer fracturing technology for deep, high temperature and high pressure gas wells in Kuqa piedmont[J]. Oil Drilling & Production Technology, 2021, 43(2): 239–243.

    [2] 王宴滨,石小磊,高德利,等. 深层高温高压气井完井测试管柱失效分析:以顺南地区某井为例[J]. 石油钻采工艺,2022,44(3):302–308.

    WANG Yanbin, SHI Xiaolei, GAO Deli, et al. Failure analysis of completion test string for deep high-temperature and high-pressure gas well: A case study on a well in Shunnan area[J]. Oil Drilling & Production Technology, 2022, 44(3): 302–308.

    [3] 王克林,刘洪涛,何文,等. 库车山前高温高压气井完井封隔器失效控制措施[J]. 石油钻探技术,2021,49(2):61–66.

    WANG Kelin, LIU Hongtao, HE Wen, et al. Failure control of completion packer in the high temperature and high pressure gas well of Kuqa piedmont structure[J]. Petroleum Drilling Techniques, 2021, 49(2): 61–66.

    [4] 王越之,段异生,金业权. 非常规井身结构中套管选用技术研究[J]. 石油天然气学报,2006,28(4):93–95.

    WANG Yuezhi, DUAN Yisheng, JIN Yequan. Research on casing selection technology in unconventional wellbore structure[J]. Journal of Oil and Gas Technology, 2006, 28(4): 93–95.

    [5] 高宝奎,高德利. 高温高压井测试对套管安全的特殊影响[J]. 天然气工业,2002,22(4):40–42.

    GAO Baokui, GAO Deli. Special influence of the testing in high-temperature and high-pressure wells on casing safety[J]. Natural Gas Industry, 2002, 22(4): 40–42.

    [6] 郭南舟. 准噶尔南缘地区复杂深井钻井提速关键技术研究[D]. 荆州: 长江大学, 2014.

    GUO Nanzhou. Research on key techniques for improving drilling speed of the complex and deep well in the southern edge of the Junggar Basin[D]. Jingzhou: Yangtze University, 2014.

    [7] 吴志均,段德祥,王文广,等. 明格布拉克构造 “五高” 深井试油测试技术[J]. 油气井测试,2020,29(2):13–20.

    WU Zhijun, DUAN Dexiang, WANG Wenguang, et al. The oil test technology for “five high” deep well in Mingbulak Structure[J]. Well Testing, 2020, 29(2): 13–20.

    [8] 练章华,牟易升,张强. 极端条件下气井油管柱振动力学行为的有限元分析[J]. 新疆石油天然气,2021,17(3):59–66.

    LIAN Zhanghua, MOU Yisheng, ZHANG Qiang. Finite element analysis for vibration mechanical behavior of tubing string in gas wells under extreme conditions[J]. Xinjiang Oil & Gas, 2021, 17(3): 59–66.

    [9] 靳军,王飞宇,任江玲,等. 四棵树凹陷高探1井高产油气成因与烃源岩特征[J]. 新疆石油地质,2019,40(2):145–151.

    JIN Jun, WANG Feiyu, REN Jiangling, et al. Genesis of high-yield oil and gas in Well Gaotan-1 and characteristics of source rocks in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 145–151.

    [10] 梁宝兴,周伟,刘勇,等. 四棵树凹陷高探1井流体特征及油藏类型分析[J]. 新疆石油地质,2019,40(2):152–155.

    LIANG Baoxing, ZHOU Wei, LIU Yong, et al. Fluid features and reservoir types in Well Gaotan-1 in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 152–155.

    [11] 杨迪生,肖立新,阎桂华,等. 准噶尔盆地南缘四棵树凹陷构造特征与油气勘探[J]. 新疆石油地质,2019,40(2):138–144.

    YANG Disheng, XIAO Lixin, YAN Guihua, et al. Structural characteristics and petroleum exploration in Sikeshu Sag, southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 138–144.

    [12] 陈超峰,孙刚,毛新军,等. 高探1井储层评价与产能分析[J]. 油气井测试,2020,29(5):61–67.

    CHEN Chaofeng, SUN Gang, MAO Xinjun, et al. Reservoir evaluation and productivity analysis of Well Gaotan 1[J]. Well Testing, 2020, 29(5): 61–67.

    [13] 张承武,贾海,乔雨,等. WELLCAT软件的三超气井完井设计优化[J]. 钻采工艺,2013,36(6):63–66. doi: 10.3969/J.ISSN.1006-768X.2013.06.19

    ZHANG Chengwu, JIA Hai, QIAO Yu, et al. Completion design optimization of ultra-temperature ultra-pressure ultra-deep gas well based on wellcat software[J]. Drilling & Production Technology, 2013, 36(6): 63–66. doi: 10.3969/J.ISSN.1006-768X.2013.06.19

    [14] 刘尧文,明月,张旭东,等. 涪陵页岩气井 “套中固套” 机械封隔重复压裂技术[J]. 石油钻探技术,2022,50(3):86–91. doi: 10.11911/syztjs.2022010

    LIU Yaowen, MING Yue, ZHANG Xudong, et al. “Casing in casing” mechanical isolation refracturing technology in Fuling shale gas wells[J]. Petroleum Drilling Techniques, 2022, 50(3): 86–91. doi: 10.11911/syztjs.2022010

    [15] 韩光耀,舒博钊,刘海龙,等. 复合压裂管柱结构优化设计与应用[J]. 石油矿场机械,2021,50(3):28–31. doi: 10.3969/j.issn.1001-3482.2021.03.005

    HAN Guangyao, SHU Bozhao, LIU Hailong, et al. Optimal design and application of composite fracturing string structure[J]. Oil Field Equipment, 2021, 50(3): 28–31. doi: 10.3969/j.issn.1001-3482.2021.03.005

    [16] 柳军,杜智刚,牟少敏,等. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究[J]. 特种油气藏,2022,29(5):139–148.

    LIU Jun, DU Zhigang, MU Shaomin, et al. Analysis model and influencing factors of passability of coiled tubing conveying clustered perforating string[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 139–148.

    [17] 杨同玉,韩峰,马兰荣. 尾管固井回接压裂套管屈曲失效研究[J]. 断块油气田,2019,26(5):666–669.

    YANG Tongyu, HAN Feng, MA Lanrong. Casing buckling failure analysis in tie-back fracturing under liner cementing conditions[J]. Fault-Block Oil and Gas Field, 2019, 26(5): 666–669.

    [18] 刘延鑫,王旱祥,侯乃贺,等. 深井试油管柱力学分析及其应用[J]. 钻采工艺,2012,35(4):71–73.

    LIU Yanxin, WANG Hanxiang, HOU Naihe, et al. Mechanical analysis of oil test strings for deep wells and its application[J]. Drilling & Production Technology, 2012, 35(4): 71–73.

    [19] 穆耶赛尔·穆拉提,徐扬,徐强,等. 塔里木油田塔中区块碳酸盐岩高温高压井试油探讨:以中古XX井为例[J]. 石化技术,2023,30(1):176–178.

    MULATI Muyesaier, XU Yang, XU Qiang, et al. Exploration of high temperature and high pressure well testing in carbonate rocks of Tazhong Block, Tarim Oilfield:Taking Zhonggu XX Well as an example[J]. Petrochemical Industry Technology, 2023, 30(1): 176–178.

    [20] 刘红磊,陈作,周林波,等. 套管封隔器分段压裂管柱遇卡原因分析及解决方案[J]. 石油钻探技术,2021,49(2):102–106.

    LIU Honglei, CHEN Zuo, ZHOU Linbo, et al. The analysis and solution of sticking in a staged horizontal well fracturing with a casing packer[J]. Petroleum Drilling Techniques, 2021, 49(2): 102–106.

    [21] 刘洪涛,黎丽丽,吴军,等. 库车山前高温高压气井测试管柱优化配置与应用[J]. 钻采工艺,2016,39(5):42–45. doi: 10.3969/J.ISSN.1006-768X.2016.05.14

    LIU Hongtao, LI Lili, WU Jun, et al. Optimum configuration and application of well testing string for ultra-deep HTHP gas wells in Kuqa, Tarim[J]. Drilling & Production Technology, 2016, 39(5): 42–45. doi: 10.3969/J.ISSN.1006-768X.2016.05.14

  • 期刊类型引用(2)

    1. 董良. 大庆油田高温深井试油测试技术研究. 石化技术. 2025(01): 164-166 . 百度学术
    2. 庞振力,杜卫刚,张宏胜,夏林,季鹏. 试油测试一体化工艺在GT1井的应用. 油气井测试. 2024(03): 32-37 . 百度学术

    其他类型引用(0)

图(6)  /  表(3)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  52
  • PDF下载量:  63
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2023-02-16
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-11
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回