Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool
-
摘要:
为了降低生产流体在井筒中产生的压降、充分利用积液气井自身能量进行低成本排水采气,研制了喷射旋流复合排液工具。在设计喷射旋流复合排液工具结构的基础上,研制了其性能测试试验系统,测试了不同气体流量下放置不同结构参数该工具时的模拟井筒压降,开展了结构参数的单因素分析和正交试验分析,得到了不同条件下喷射旋流复合排液工具最优的结构参数。研究结果表明,喷射旋流复合排液工具的主要结构参数均会影响流体在井筒中产生的压降;要使井筒中的压降最小,不同产量的气井对应不同结构参数的工具。结构参数优化后的喷射旋流复合排液工具在西南地区M气田A井进行了现场试验,在相同生产周期内,累计产气量平均增加20.95%,累计产水量平均增加21.59%,验证了该工具的排液增产效果。研究和现场试验表明,喷射旋流复合排液工具为积液气井低成本排水采气提供了一种新的技术手段。
Abstract:In order to reduce the pressure drop of production fluid in the wellbore and make full use of the energy of gas wells with fluid accumulation for low-cost drainage and gas recovery, a jetting and helical combination drain tool was developed. Based on the design of the tool structure, the performance test system of the tool was built.The simulated wellbore pressure drops at different gas flow rates with different structural parameters were tested, and the single factor analysis and orthogonal test analysis of the structural parameters of the tool were carried out. In addition, the optimal structural parameter combinations of the tool at different conditions were obtained. The results show that the main structural parameters of the tool affect the pressure drop of the fluid in the wellbore. Moreover, gas wells with different production rate require tools with different structural parameter combinations to minimize the wellbore pressure drop. After the optimized tool was run in Well A, the cumulative gas production increased by an average of 20.95%, and the cumulative water production increased by an average of 21.59% over a same production period. The drainage stimulation effect of the tool was demonstrated. The successful application of this tool provides a new technical method for low-cost drainage and gas recovery in gas wells with fluid accumulation.
-
-
表 1 各影响因素取值水平
Table 1 Value level of each influencing factor
水平 影响因素 旋流体长度/mm 螺旋角/(°) 螺旋体中径/mm 螺旋槽宽度/mm 喷射管内径/mm 喷射管长度/mm 吸入孔直径/mm 1 200 35 30 10 15 100 4 2 300 45 35 20 20 150 6 3 350 55 40 30 25 200 8 4 400 65 45 40 30 250 10 表 2 不同结构参数喷射旋流复合排液工具的模拟井筒压降
Table 2 Simulated wellbore pressure drops for jetting and helical combination drain tools with different structural parameter
序号 旋流体长度/mm 螺旋角/(°) 螺旋体中径/mm 螺旋槽宽度/mm 喷射管内径/mm 喷射管长度/mm 吸入孔直径/mm 井筒压降/kPa 1 200 35 30 10 15 100 4 12.23 2 200 45 35 20 20 150 6 12.71 3 200 55 40 30 25 200 8 14.69 4 200 65 45 40 30 250 10 10.69 5 300 45 35 40 15 100 6 9.85 6 300 35 30 30 20 150 4 12.05 7 300 65 45 20 25 200 10 10.07 8 300 55 40 10 30 250 8 9.30 9 350 65 40 40 15 150 8 8.00 10 350 55 45 30 20 100 10 10.81 11 350 45 30 20 25 250 4 9.33 12 350 35 35 10 30 200 6 7.52 13 400 55 45 10 15 150 10 9.20 14 400 65 40 20 20 100 8 9.56 15 400 35 35 30 25 250 6 10.69 16 400 45 30 40 30 200 4 10.02 17 200 65 30 30 15 250 4 9.13 18 200 55 35 40 20 200 6 9.49 19 200 45 40 10 25 150 8 9.98 20 200 35 45 20 30 100 10 8.38 21 300 55 35 20 15 250 6 9.69 22 300 65 30 10 20 200 4 12.93 23 300 35 45 40 25 150 10 11.91 24 300 45 40 30 30 100 8 8.69 25 350 35 40 20 15 200 8 11.07 26 350 45 45 10 20 250 10 12.10 27 350 55 30 40 25 100 4 8.80 28 350 65 35 30 30 150 6 7.44 29 400 45 45 30 15 200 10 8.83 30 400 35 40 40 20 250 8 8.62 31 400 65 35 10 25 100 6 9.56 32 400 55 30 20 30 150 4 6.21 表 3 极差分析结果
Table 3 Range analysis results
计算结果 旋流体长度 螺旋角 螺旋体中径 螺旋槽宽度 喷射管内径 喷射管长度 吸入孔直径 K1 87.5 83.3 80.7 83.8 83.0 77.9 80.7 K2 76.5 72.5 74.9 80.0 84.1 77.5 77.0 K3 78.2 82.1 79.9 75.3 75.2 84.6 76.5 K4 77.4 81.7 84.0 80.4 77.3 79.6 82.4 最大值 87.5 83.3 84.0 82.8 84.1 84.6 82.4 最小值 76.5 72.5 74.9 76.3 75.2 77.5 76.5 极差 11.0 10.8 9.1 8.5 8.9 7.1 5.9 表 4 不同气体流量下喷射旋流复合排液工具的最优结构参数
Table 4 Optimal structural parameter combinations of jetting and helical combination drain tool at different gas flow rates
气体流量/
(m3·h−1)最优结构参数 旋流体长度/mm 螺旋角/(°) 旋流体中径/mm 螺旋槽宽度/mm 喷射管内径/mm 喷射管长度/mm 吸入孔直径/mm 60 300 45 35 30 25 150 8 70 300 45 40 30 25 150 8 80 300 55 40 40 25 150 8 -
[1] 王辉,周朝,周忠亚,等. 页岩气井排水采气工艺综合优选方法[J]. 钻采工艺,2022,45(2):154–159. doi: 10.3969/J.ISSN.1006-768X.2022.02.28 WANG Hui, ZHOU Chao, ZHOU Zhongya, et al. Comprehensive optimal selection method of drainage gas recovery technology for shale gas horizontal wells[J]. Drilling & Production Technology, 2022, 45(2): 154–159. doi: 10.3969/J.ISSN.1006-768X.2022.02.28
[2] 周朝,何祖清,付道明,等. 页岩气水平井全井筒临界携液流量模型[J]. 石油钻采工艺,2021,43(6):791–797. doi: 10.13639/j.odpt.2021.06.016 ZHOU Chao, HE Zuqing, FU Daoming, et al. Full-hole critical liquid carrying flow model of shale-gas horizontal well[J]. Oil Dril-ling & Production Technology, 2021, 43(6): 791–797. doi: 10.13639/j.odpt.2021.06.016
[3] 蔡萌,王羕,孙春龙,等. 新型井下轴流式入口旋流器分析及优选[J]. 石油钻采工艺,2022,44(5):594–599. CAI Meng, WANG Yang, SUN Chunlong, et al. Analysis and optimization of a novel downhole axial flow inlet hydrocyclone[J]. Oil Drilling & Production Technology, 2022, 44(5): 594–599.
[4] 周舰. 低压低产气井井下智能机器人排水采气技术[J]. 石油钻探技术,2020,48(3):85–89. doi: 10.11911/syztjs.2020059 ZHOU Jian. Drainage gas recovery technique with downhole intelligent robots in low pressure and low production gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 85–89. doi: 10.11911/syztjs.2020059
[5] SIMPSON D A. Vortex flow technology finding new applica-tions[J]. Rocky Mountain Oil Journal, 2003, 83(45): 113103.
[6] 黄艳,佘朝毅,钟晓瑜,等. 国外排水采气工艺技术现状及发展趋势[J]. 钻采工艺,2005,28(4):57–60. doi: 10.3969/j.issn.1006-768X.2005.04.020 HUANG Yan, SHE Chaoyi, ZHONG Xiaoyu, et al. Resent situation and development tendency on the foreign technology of dewatering gas production[J]. Drilling & Production Technology, 2005, 28(4): 57–60. doi: 10.3969/j.issn.1006-768X.2005.04.020
[7] 杨旭东,卫亚明,肖述琴,等. 井下涡流工具排水采气在苏里格气田探索研究[J]. 钻采工艺,2013,36(6):125–127. doi: 10.3969/J.ISSN.1006-768X.2013.06.37 YANG Xudong, WEI Yaming, XIAO Shuqin, et al. Research of downhole vortex dewatering gas recovery in Sulige Gas Field[J]. Drilling & Production Technology, 2013, 36(6): 125–127. doi: 10.3969/J.ISSN.1006-768X.2013.06.37
[8] 谢川. 川西产水气井井下涡流工具模拟与优化[D]. 成都: 西南石油大学, 2018. XIE Chuan. Simulation and optimization of downhole vortex tools for water-gas wells in western Sichuan[D]. Chengdu: Southwest Petroleum University, 2018.
[9] 杨涛,余淑明,杨桦,等. 气井涡流排水采气新技术及其应用[J]. 天然气工业,2012,32(8):63–66. doi: 10.3787/j.issn.1000-0976.2012.08.013 YANG Tao, YU Shuming, YANG Hua, et al. A new technology of vortex dewatering gas recovery in gas wells and its application[J]. Natural Gas Industry, 2012, 32(8): 63–66. doi: 10.3787/j.issn.1000-0976.2012.08.013
[10] 叶长青,熊杰,康琳洁,等. 川渝气区排水采气工具研制新进展[J]. 天然气工业,2015,35(2):54–58. doi: 10.3787/j.issn.1000-0976.2015.02.008 YE Changqing, XIONG Jie, KANG Linjie, et al. New progress in the R & D of water drainage gas recovery tools in Sichuan and Chongqing gas zones[J]. Natural Gas Industry, 2015, 35(2): 54–58. doi: 10.3787/j.issn.1000-0976.2015.02.008
[11] 郭秀庭,强华,秦晓东,等. 旋流排水采气技术研究[J]. 油气井测试,2015,24(3):68–71. doi: 10.3969/j.issn.1004-4388.2015.03.020 GUO Xiuting, QIANG Hua, QIN Xiaodong, et al. Research on vortex drainage gas recovery technology[J]. Well Testing, 2015, 24(3): 68–71. doi: 10.3969/j.issn.1004-4388.2015.03.020
[12] 李隽,李楠,李佳宜,等. 涡流排水采气技术数值模拟研究[J]. 石油钻采工艺,2013,35(6):65–68. doi: 10.13639/j.odpt.2013.06.002 LI Juan, LI Nan, LI Jiayi, et al. Numerical simulation research on eddy current drainage gas recovery technology[J]. Oil Drilling & Production Technology, 2013, 35(6): 65–68. doi: 10.13639/j.odpt.2013.06.002
[13] 冯翠菊,王春生,张黉. 天然气井下涡流工具排液效果影响因素分析[J]. 石油机械,2013,41(1):78–81. doi: 10.3969/j.issn.1001-4578.2013.01.019 FENG Cuiju, WANG Chunsheng, ZHANG Hong. Influencing factor analysis of the liquid discharge effect of downhole vortex tool in natural gas wells[J]. China Petroleum Machinery, 2013, 41(1): 78–81. doi: 10.3969/j.issn.1001-4578.2013.01.019
[14] 陈杰,杨志,耿凤康,等. 井下涡流工具结构参数优化[J]. 科学技术与工程,2020,20(30):12385–12396. doi: 10.3969/j.issn.1671-1815.2020.30.019 CHEN Jie, YANG Zhi, GENG Fengkang, et al. Structural parameter optimization of downhole vortex tool[J]. Science Technology and Engineering, 2020, 20(30): 12385–12396. doi: 10.3969/j.issn.1671-1815.2020.30.019
[15] 吴丹,颜廷俊,谢双喜,等. 气井涡流排液采气工具参数仿真及结构优化[J]. 石油机械,2014,42(8):111–115. doi: 10.3969/j.issn.1001-4578.2014.08.026 WU Dan, YAN Tingjun, XIE Shuangxi, et al. Numerical simulation and structural optimization of vortex tool for liquid discharge in gas well[J]. China Petroleum Machinery, 2014, 42(8): 111–115. doi: 10.3969/j.issn.1001-4578.2014.08.026
[16] 陈德春,姚亚,韩昊,等. 气井涡流携液机理和携液效率数值模拟研究[J]. 石油机械,2015,43(9):91–94. doi: 10.16082/j.cnki.issn.1001-4578.2015.09.021 CHEN Dechun, YAO Ya, HAN Hao, et al. Numerical simulation on fluid-carrying mechanism and efficiency of vortex flow in gas wells[J]. China Petroleum Machinery, 2015, 43(9): 91–94. doi: 10.16082/j.cnki.issn.1001-4578.2015.09.021
[17] 陈德春,姚亚,韩昊,等. 气井涡流工具排液效果及结构参数优化实验[J]. 大庆石油地质与开发,2016,35(4):109–112. doi: 10.3969/J.ISSN.1000-3754.2016.04.021 CHEN Dechun, YAO Ya, HAN Hao, et al. Optimizing experiment on the liquid discharge effects and its structural parameters for gas-well vortex tool[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(4): 109–112. doi: 10.3969/J.ISSN.1000-3754.2016.04.021
[18] 于淑珍,胡康,宋渊娟,等. 涡流排水采气技术机理研究及应用[J]. 钻采工艺,2015,38(3):49–51. YU Shuzhen, HU Kang, SONG Yuanjuan, et al. Mechanism research and application of vortex drainage gas recovery techno-logy[J]. Drilling & Production Technology, 2015, 38(3): 49–51.
[19] 徐建宁,邵乐,梁慧荣,等. 基于正交试验的涡流排水采气影响因素分析[J]. 石油矿场机械,2014,43(11):52–56. doi: 10.3969/j.issn.1001-3482.2014.11.013 XU Jianning, SHAO Le, LIANG Huirong, et al. Based on orthogonal experiment analysis of factors affecting vortex drainage gas[J]. Oil Field Equipment, 2014, 43(11): 52–56. doi: 10.3969/j.issn.1001-3482.2014.11.013
[20] ALI A J, SCOTT S L, FEHN B. Investigation of new tool to unload liquids from stripper-gas wells[R]. SPE 84136, 2003.
[21] 周朝,吴晓东,张同义,等. 排液采气涡流工具结构参数优化实验研究[J]. 石油钻探技术,2018,46(6):105–110. doi: 10.11911/syztjs.2018142 ZHOU Chao, WU Xiaodong, ZHANG Tongyi, et al. Experimental research for parameter optimization of the vortex tool for drainage gas recovery[J]. Petroleum Drilling Techniques, 2018, 46(6): 105–110. doi: 10.11911/syztjs.2018142
[22] ZHOU Chao, WU Xiaodong, ZHANG Tongyi, et al. Dynamic analysis for two-phase vortex flow and optimization of vortex tools to unload liquid from gas wells[J]. Journal of Petroleum Science and Engineering, 2019, 173: 965–974. doi: 10.1016/j.petrol.2018.10.091
[23] 周朝,吴晓东,张同义,等. 井筒两相涡流场液膜动力学分析与涡流工具优化[J]. 西安石油大学学报(自然科学版),2020,35(2):54–59. ZHOU Chao, WU Xiaodong, ZHANG Tongyi, et al. Hydrodynamic analysis of liquid film of two-phase vortex flow in wellbore and optimization of vortex tool[J]. Journal of Xi’an Shiyou Univer-sity(Natural Science Edition), 2020, 35(2): 54–59.
[24] 宋先知,李嘉成,石宇,等. 多分支井地热系统注采性能室内实验研究[J]. 石油钻探技术,2021,49(1):81–87. doi: 10.11911/syztjs.2021019 SONG Xianzhi, LI Jiacheng, SHI Yu, et al. Laboratory-scale experimental study on the injection-production performance of a multilateral-well enhanced geothermal system[J]. Petroleum Drilling Techniques, 2021, 49(1): 81–87. doi: 10.11911/syztjs.2021019
[25] 叶正荣, 裘智超, 周祥, 等. 克拉2气田排水采气工艺优选及效果分析[J]. 石油钻采工艺, 2022, 44(3): 335-340. YE Zhengrong, QIU Zhichao, ZHOU Xiang, et al. Optimization and effect analysis of drainage gas recovery technology in Kela 2 Gas Field[J]. Oil Drilling & Production Technology, 2022, 44(3): 335-340.
[26] 李庆东. 试验优化设计[M]. 重庆: 西南师范大学出版社, 2016: 36− 74. LI Qingdong. Optimum design of experiments[M]. Chongqing: Southwest Normal University Press, 2016: 36−74.