Numerical Simulation and Test of Velocity Imaging for Remote Detection Acoustic Logging While Drilling
-
摘要:
为了获取井周地层方位声波速度信息,评价地层的非均匀性,设计了不同方向速度模型井,研究了随钻声波远探测的方位声波速度测量性能。不同方向速度模型井包含4个扇区,相邻扇区纵波速度和横波速度均不同。数值模拟了该模型井的声波传播,采用偏极子发射和偏极子接收的测量模式,获得了方位角为0°,90°,180°和270°时的阵列接收波形,从接收波形提取到了井周地层方位声波速度信息,识别到了方位分区的变化。根据不同方向速度模型井的参数设计了试验装置,使用瓦片状方位声源准确测量到2个扇区高速介质的声波速度,识别出2个扇区低速介质的声波速度变化趋势,试验结果与数值模拟结果基本一致。研究结果表明,利用不同方向速度模型井可以对不同方向的声波速度进行评价,为随钻声波远探测进行地质导向和地层各向异性分析提供理论依据。
Abstract:In order to obtain azimuthal acoustic velocity information of formations around wells and evaluate the heterogeneity of the formations, a well model with different velocities in different directions was designed, and the performance of remote detection acoustic logging while drilling (LWD) in measuring azimuthal acoustic velocity was studied. The well model had four sectors, and the velocities of compressional and shear waves in adjacent sectors were different. In addition, acoustic wave propagation of the well model was numerically simulated, and an eccentric transmitter and an eccentric receiver were adopted for measurement. As a result, waveforms recorded by array receivers were obtained with their azimuth angle of 0°, 90°, 180°, and 270°, respectively. Furthermore, azimuthal acoustic velocity information of formations around wells was extracted from the waveforms, and changes in sectors with different azimuths were identified. According to the parameters of the well model with different velocities in different directions, a test device was designed. The tile-like azimuthal acoustic source was used to accurately measure the acoustic velocity of high-speed media in two sectors, and the acoustic velocity variation trend of low-speed media in the other two sectors was identified. The test results were in agreement with the simulation results. The research showed that it is feasible to evaluate acoustic velocity in different directions by the well model with different velocities in different directions, which provides a theoretical basis for geosteering and formation anisotropy analysis by remote detection acoustic LWD.
-
-
表 1 模型井声学参数
Table 1 Acoustic parameters of well model
介质类型 纵波速度/
(m·s−1)横波速度/
(m·s−1)密度/
(kg·m−3)内半径/
mm外半径/
mm水 1 500 0 1 000 0 108 铝质钻铤 6 300 3 100 2 700 28 86 A扇区 6 300 3 100 2 700 108 118 B扇区 2 600 1 300 1 400 108 118 C扇区 5 800 3 100 7 800 108 118 D扇区 2 600 1 300 1 400 108 118 水 1 500 0 1 000 118 500 表 2 声波速度测量数据
Table 2 Acoustic velocity measured data
序号 方位角/
(°)声波速度/(m·s−1) 测量偏差,
%数值模拟 试验测量 1 0 5 263.1 5 000 4.99 2 90 4 347.8 4 000 7.99 3 180 5 000.0 5 000 0 4 270 4 347.8 4 000 7.99 -
[1] MARKET J, DEADY R. Azimuthal sonic measurements: new methods in theory and practice[R]. SPWLA-2008-G, 2008.
[2] MICKAEL M, BARNETT C, DIAB M. Azimuthally focused LWD sonic logging for shear wave anisotropy measurement and borehole imaging[R]. SPE 160133, 2012.
[3] 杨锦舟, 肖红兵, 黄敬, 等. 随钻方位声波测井装置: CN201220537460.4[P]. 2013−05−08. YANG Jinzhou, XIAO Hongbing, HUANG Jing, et al. Azimuthal acoustic LWD device: CN201220537460.4[P]. 2013−05−08.
[4] 底青云, 张文秀, 陈文轩, 等. 一种随钻方位声波测井装置及测量方法: CN201810990687.6[P]. 2019−05−10. DI Qingyun, ZHANG Wenxiu, CHEN Wenxuan, et al. A azimuthal acoustic LWD device and method: CN201810990687.6[P]. 2019−05−10.
[5] PITCHER J, MARKET J, HINZ D. Geosteering with sonic in conventional and unconventional reservoirs[R]. SPE 146732, 2011.
[6] WANG T, DAWBER M, BOONEN P. Theory of unipole acoustic logging tools and their relevance to dipole and quadrupole tools for slow formations[R]. SPE 145515, 2011.
[7] 乔文孝, 车小花, 鞠晓东, 等. 随钻地层界面声波扫描测量装置和方法: CN200910235603.9[P]. 2012−12−12. QIAO Wenxiao, CHE Xiaohua, JU Xiaodong, et al. Measurement device and method for acoustic scanning formation layer while drilling: CN200910235603.9[P]. 2012−12−12.
[8] 卫建清,何晓,李希强,等. 含偏心点声源的随钻测井声场模拟和地层各向异性反演研究[J]. 地球物理学报,2019,62(4):1554–1564. WEI Jianqing, HE Xiao, LI Xiqiang, et al. Simulation of acoustic LWD with an eccentric source and inversion of formation anisotropy[J]. Chinese Journal of Geophysics, 2019, 62(4): 1554–1564.
[9] 张正鹏,刘玉凯,苏远大,等. 考虑压电声源-井孔系统的随钻方位声波测井数值模拟[J]. 测井技术,2020,44(1):1–7. ZHANG Zhengpeng, LIU Yukai, SU Yuanda, et al. Numerical simulation of azimuthal acoustic LWD under a piezoelectric source-wellbore system[J]. Well Logging Technology, 2020, 44(1): 1–7.
[10] 孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022,50(4):114–120. SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114–120.
[11] 刘西恩,孙志峰,仇傲,等. 随钻四极子声波测井仪的设计及试验[J]. 石油钻探技术,2022,50(3):125–131. LIU Xien, SUN Zhifeng, QIU Ao, et al. Design and experiment for a quadrupole acoustic LWD tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125–131.
[12] 盛达,于洋,祁晓. 随钻四极子声波测井仪在油田勘探开发中的应用[J]. 测井技术,2021,45(6):573–579. SHENG Da, YU Yang, QI Xiao. Application of quadrupole array sonic tool in oilfield exploration and development[J]. Well Logging Technology, 2021, 45(6): 573–579.
[13] 朱祖扬. 随钻单极子声波测井模式优化及远探测[J]. 应用声学,2022,41(2):310–317. ZHU Zuyang. The logging mode optimization and remote detection performance of monopole acoustic logging while drilling[J]. Journal of Applied Acoustics, 2022, 41(2): 310–317.
[14] 杨玉峰. 随钻声波测井时域有限差分模拟与钻铤波传播特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. YANG Yufeng. Studies on the finite-difference time-domain simulation of acoustic logging while drilling and the propagation characteristics of the collar wave[D]. Harbin: Harbin Institute of Technology, 2014.
[15] 马海,李铮阳,肖红兵. 随钻声波测井仪模拟实验装置研制及应用[J]. 内蒙古石油化工,2019,45(7):1–5. MA Hai, LI Zhengyang, XIAO Hongbing. Development and application of simulation experimental device for acoustic logging while drilling[J]. Inner Mongolia Petrochemical Industry, 2019, 45(7): 1–5.
-
期刊类型引用(30)
1. 黄宁,孙金声,刘敬平,吕开河,王宗轮,邓雪菲. 水基钻井液封堵理论和材料研究现状及发展趋势. 化工进展. 2025(01): 367-378 . 百度学术
2. 曹继飞. 胜利滩浅海复杂地层钻井关键技术研究与应用. 石油机械. 2024(01): 52-58 . 百度学术
3. 刘均一,李公让,黄利民,马晓勇,夏晔. 胜利油田钻井液环保处理技术研究与应用. 石油钻探技术. 2024(03): 47-52 . 本站查看
4. 钟成兵,罗霄. 基于疏水改性的纳米二氧化硅页岩稳定剂的制备及性能评价. 钻采工艺. 2023(01): 153-158 . 百度学术
5. 曹辉,李宝军,赵向阳. 厄瓜多尔Tambococha油田水平井钻井液技术. 石油钻探技术. 2022(01): 54-59 . 本站查看
6. 曹伶,于培志. 低活度水基钻井液体系中的活度调节剂的研究与应用. 应用化工. 2022(08): 2344-2347+2361 . 百度学术
7. 李琼. 强抑制复合盐钻井液体系在山古101井的应用. 石油化工应用. 2021(01): 52-55+62 . 百度学术
8. 陈新勇,徐明磊,马樱,徐雅萍,赵博,韩煦. 杨税务潜山油气藏大位移井钻井完井关键技术. 石油钻探技术. 2021(02): 14-19 . 本站查看
9. 吴雄军,林永学,金军斌,李大奇,刘珂. 川西低渗气藏井壁修补强化钻井液技术. 断块油气田. 2021(02): 269-273 . 百度学术
10. 李成嵩,王银生. 东营地区地热回灌井钻井完井技术研究与试验. 石油钻探技术. 2021(06): 50-54 . 本站查看
11. 李公让,于雷,王志伟,张敬辉,邱文德,黄元俊. 钻井液活度平衡技术新认识及现场应用. 钻井液与完井液. 2021(06): 743-747 . 百度学术
12. 方俊伟,张翼,李双贵,于培志,李银婷. 顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术. 石油钻探技术. 2020(02): 17-22 . 本站查看
13. 胡大梁,欧彪,何龙,肖国益,李文生,唐宇祥. 川西海相超深大斜度井井身结构优化及钻井配套技术. 石油钻探技术. 2020(03): 22-28 . 本站查看
14. 宣扬,刘珂,郭科佑,宋兆辉,钱晓琳,林永学. 顺北超深水平井环保耐温低摩阻钻井液技术. 特种油气藏. 2020(03): 163-168 . 百度学术
15. 赵素丽. 强抑制高润滑丙三醇基钻井液体系研究与性能评价. 石油钻探技术. 2020(04): 56-62 . 本站查看
16. 翟科军,蓝强,高伟,郑成胜,赵怀珍. 低活度高钙聚胺钻井液在准北101井的应用. 钻井液与完井液. 2020(04): 444-449 . 百度学术
17. 于雷,冯光通,刘宝锋,张守文. 低活度强封堵钻井液体系在准中2区的研究与应用. 承德石油高等专科学校学报. 2019(02): 18-21+52 . 百度学术
18. 谢荣斌,陶林,薛志生,张江坤,刘迪. 钠盐在渤海油田钻井液体系中的探索与应用. 石化技术. 2019(05): 29-30 . 百度学术
19. 赵全民,李燕,刘浩亚,何青水,唐文泉. SXJD-Ⅰ型低伤害暂堵修井液技术. 石油钻探技术. 2019(02): 109-113 . 本站查看
20. 张锦宏. 中国石化石油工程技术现状及发展建议. 石油钻探技术. 2019(03): 9-17 . 本站查看
21. 夏海英,兰林,杨丽,黄璜,朱洪宇. 强抑制钻井液体系研究及现场应用. 钻井液与完井液. 2019(04): 427-430 . 百度学术
22. 李坤豫,廖奉武,胡靖,王文进,胡友林. 疏水纳米SiO_2在泥页岩水基钻井液中的应用. 能源化工. 2019(03): 56-59 . 百度学术
23. 罗勇,张海山,谭枭麒,蔡斌,王荐,刘晋. 反渗透水基钻井液体系在东海油田的应用. 化学与生物工程. 2019(10): 58-63 . 百度学术
24. 李劲松,翁昊阳,段飞飞,严维锋,谭强. 钻井液类型对井壁稳定的影响实例与防塌机理分析. 科学技术与工程. 2019(26): 161-167 . 百度学术
25. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看
26. 刘政,李俊材,蒋学光. 强封堵高密度油基钻井液在新疆油田高探1井的应用. 石油钻采工艺. 2019(04): 467-474 . 百度学术
27. 郑成胜,蓝强,张敬辉,李公让. 玛湖油田MaHW1602水平井低活度钻井液技术. 石油钻探技术. 2019(06): 48-53 . 本站查看
28. 王波,王旭,邢志谦,苑宗领,李士杰. 冀东油田人工端岛大位移井钻井完井技术. 石油钻探技术. 2018(04): 42-46 . 本站查看
29. 吕广玉,史配铭,曲小文. 靖边气田钻井液设计及油气层保护分析. 科技经济导刊. 2018(28): 92 . 百度学术
30. 向朝纲,陈俊斌,杨刚. 钻井液浸泡作用下脆性页岩强度特征实验. 断块油气田. 2018(06): 803-806 . 百度学术
其他类型引用(3)