超深探测随钻电磁波测井地质信号特性研究

刘天淋, 岳喜洲, 李国玉, 马明学, 王仡仡

刘天淋,岳喜洲,李国玉,等. 超深探测随钻电磁波测井地质信号特性研究[J]. 石油钻探技术,2022, 50(6):41-48. DOI: 10.11911/syztjs.2022110
引用本文: 刘天淋,岳喜洲,李国玉,等. 超深探测随钻电磁波测井地质信号特性研究[J]. 石油钻探技术,2022, 50(6):41-48. DOI: 10.11911/syztjs.2022110
LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling [J]. Petroleum Drilling Techniques,2022, 50(6):41-48. DOI: 10.11911/syztjs.2022110
Citation: LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling [J]. Petroleum Drilling Techniques,2022, 50(6):41-48. DOI: 10.11911/syztjs.2022110

超深探测随钻电磁波测井地质信号特性研究

基金项目: 国家科技重大专项“大型油气田及煤层气开发”(编号:2016ZX05058002-002)、国家重点研发计划“深海关键技术与装备”(编号:2017YFC0307104)、中国海洋石油集团科技项目“Drilog2.0随钻测井系列化技术研究”(编号:CNOOC-KJ 135 ZDXM 20 YF2019-1)联合资助
详细信息
    作者简介:

    刘天淋(1993—),男,四川合江人,2016年毕业于中国石油大学(华东)勘查技术与工程专业,2019年获中国石油大学(华东)地质资源与地质工程专业硕士学位,工程师,主要从事随钻电磁波类仪器研发工作。E-mail: liutl5@cosl.com.cn。

  • 中图分类号: P631.8+11

Study over the Geo-Signal Properties of Ultra-Deep Electromagnetic Wave Logging While Drilling

  • 摘要:

    为了解超深探测随钻电磁波测井地质信号的过界面特征及其影响因素,基于层状各向异性介质多分量电磁波测井解析解,对PeriScope轴向发射–倾斜接收线圈系、DWPR双斜线圈系以及GeoSphere对称测量模式3种结构的地质信号,在超深探测随钻电磁波测井的低频、长源距条件下进行了数值模拟,对比了3种结构地质信号的过界面响应特征、探测深度以及各向异性的影响,探讨了其在超深探测中的适用性。研究得知,3种结构的地质信号均可指示地层界面及其方位,且长源距、高频下响应的非单调性明显,其中DWPR双斜地质信号的单调性最强;电阻率比100∶1地层模型下,GeoSphere地质信号具有更大的探测深度,DWPR双斜线圈系地质信号次之;DWPR双斜线圈系的幅度比地质信号不受地层各向异性的影响,其余地质信号均受地层各向异性的影响。研究结果表明,降低频率、加大源距可有效增强地质信号探测深度,降低频率、减小源距有利于地质信号对地层界面响应的单调性,各向异性对绝大部分地质信号的影响明显。

    Abstract:

    In order to understand the characteristics and influencing factors of geo-signals of ultra-deep electromagnetic wave logging while drilling through interfaces, the analytical solution of multi-component electromagnetic wave logging in layered anisotropic media was adopted. On this basis, geo-signals of three structures including the axial transmitting and tilt receiving coil system of PeriScope, the tilt transmitting and tilt receiving coil system of DWPR, and the symmetrical measurement of GeoSphere were numerically simulated under a low frequency and long spacing condition of ultra-deep electromagnetic wave logging while drilling. The response characteristics through interfaces, depth of investigation (DOI), and influence of anisotropy of the geo-signals of the three structures were compared, and their applicabilities in ultra-deep detection were discussed. The study found that the geo-signals of the three structures could indicate stratigraphic interfaces and their orientations, and the non-monotonicity of the responses was apparent under long spacing and high frequency. Specifically, the monotonicity of the geo-signals by dual tilt coil system of DWPR was the strongest. Under a stratigraphic model with a resistivity ratio of 100:1, the geo-signals from GeoSphere had the largest DOI, and those from dual tilt coil system of DWPR took second place. The amplitude ratio geo-signals of the dual tilt coil system of DWPR were not influenced by the anisotropy of strata, while other geo-signals were all affected by the anisotropy of strata. The results showed that the DOI of the geo-signals could be effectively improved by lowering the frequency and enhancing the spacing, which was also beneficial to the monotonicity of the geo-signal responses to the stratigraphic interfaces, with the result that the anisotropy had influences on almost all geo-signals.

  • 图  1   三层地层模型下3种结构地质信号的响应特征

    Figure  1.   Response characteristics of three geo-signals using a three-layer stratigraphic model

    图  2   不同源距下3种结构幅度比地质信号过界面的响应特征

    Figure  2.   Response characteristics of geo-signals with three structural amplitude ratios through interfaces using different spacing

    图  3   不同源距下3种结构相位差地质信号过界面的响应特征

    Figure  3.   Response characteristics of geo-signals with three structural phase differences through interfaces using different spacing

    图  4   不同频率下3种结构幅度比地质信号过界面的响应特征

    Figure  4.   Response characteristics of geo-signals with three structural amplitude ratios through interfaces using different frequencies

    图  5   不同频率下3种结构相位差地质信号过界面的响应特征

    Figure  5.   Response characteristics of geo-signals with three structural phase differences through interfaces using different frequencies

    图  6   不同源距下3种幅度比地质信号的探测深度

    Figure  6.   DOI of geo-signals with three amplitude ratios using different spacing

    图  7   不同源距下3种结构相位差地质信号的探测深度

    Figure  7.   DOI of geo-signals with three structural phase differences using different spacing

    图  8   不同频率下3种幅度比地质信号的探测深度

    Figure  8.   DOI of geo-signals with three amplitude ratios using different frequencies

    图  9   不同频率下3种结构相位差地质信号的探测深度

    Figure  9.   DOI of geo-signals with three structural phase differences using different frequencies

    图  10   不同各向异性系数下3种结构幅度比地质信号的响应特征

    Figure  10.   Response characteristics of geo-signals with three structural amplitude ratios using different anisotropy coefficients

    图  11   不同各向异性系数下3种结构相位差地质信号的响应特征

    Figure  11.   Response characteristics of geo-signals with three structural phase differences using different anisotropy coefficients

  • [1]

    BEER R, DIAS C T, DA CUNHA A M V, et al. Geosteering and/or reservoir characterization the prowess of new-generation LWD tools[R]. SPWLA-2010-93320, 2010.

    [2]

    CLEGG N, PARKER T, DJEFEL B, et al. The final piece of the puzzle: 3-D inversion of ultra-deep azimuthal resistivity LWD data[R]. SPWLA-2019-HHH, 2019.

    [3]

    CONSTABLE M, ANTONSEN F, STALHEIM S O, et al. Looking ahead of the bit while drilling: from vision to reality[R]. SPWLA-2016-MMMM, 2016.

    [4]

    WU H H, GOLLA C, PARKER T, et al. A new ultra-deep azimuthal electromagnetic LWD sensor for reservoir insight[R]. SPWLA-2018-X, 2018.

    [5]

    LI Qiming, OMERAGIC D, CHOU L, et al. New directional electromagnetic tool for proactive geosteering and accurate formation evaluation while drilling[R]. SPWLA-2005-UU, 2005.

    [6] 马明学,岳喜洲,李国玉. 基于倾斜发射-倾斜接收仪器结构进行随钻地质导向与地层各向异性评价[J]. 中国石油大学学报(自然科学版),2018,42(4):50–58.

    MA Mingxue, YUE Xizhou, LI Guoyu. Geosteering and anisotropic resistivity evaluation by using a tilted transmitter-tilted receiver tool structure[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(4): 50–58.

    [7] 岳喜洲,刘天淋,李国玉,等. 随钻方位电磁波测井响应快速正演方法与地质导向应用[J]. 地球物理学报,2022,65(5):1909–1920. doi: 10.6038/cjg2022P0233

    YUE Xizhou, LIU Tianlin, LI Guoyu, et al. An analytically fast forward method of LWD azimuthal electromagnetic measurement and its geo-steering application[J]. Chinese Journal of Geophysics, 2022, 65(5): 1909–1920. doi: 10.6038/cjg2022P0233

    [8]

    SEYDOUX J, LEGENDRE E, MIRTO E, et al. Full 3D deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling[R]. SPWLA-2014-LLLL, 2014.

    [9]

    BITTAR M, KLEIN J, BESTE R, et al. A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation[R]. SPE 109971, 2007.

    [10]

    LI Shanjun, CHEN Jiefu, BINFORD T L, Jr, et al. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.

    [11]

    WANG T, CHEMALI R, HART E, et al. Real-time formation imaging, dip, and azimuth while drilling from compensated deep directional resistivity[R]. SPWLA-2007-NNN, 2007.

    [12]

    HARTMANN A, VIANNA A, MAURER H M, et al. Verification testing of a new extra-deep azimuthal resistivity measurement[R]. SPWLA-2014-MM, 2014.

    [13] 王磊,范宜仁,操应长,等. 大斜度井/水平井随钻方位电磁波测井资料实时反演方法[J]. 地球物理学报,2020,63(4):1715–1724. doi: 10.6038/cjg2020M0617

    WANG Lei, FAN Yiren, CAO Yingchang, et al. Real-time inversion of logging-while-drilling azimuthal electromagnetic measurements acquired in high-angle and horizontal wells[J]. Chinese Journal of Geophysics, 2020, 63(4): 1715–1724. doi: 10.6038/cjg2020M0617

    [14]

    LI Hu, ZHOU J. Distance of detection for LWD deep and ultra-deep azimuthal resistivity tools[R]. SPWLA-2017-PPPP, 2013.

    [15]

    HU Xufei, FAN Yiren. Huber inversion for logging-while-drilling resistivity measurements in high angle and horizontal wells[J]. Geophysics, 2018, 83(4): D113–D125. doi: 10.1190/geo2017-0459.1

    [16]

    WANG Lei, DENG Shaogui, ZHANG Pan, et al. Detection performance and inversion processing of logging-while-drilling extra-deep azimuthal resistivity measurements[J]. Petroleum Science, 2019, 16(5): 1015–1027. doi: 10.1007/s12182-019-00374-4

    [17] 张盼,邓少贵,胡旭飞,等. 超深随钻方位电磁波测井探测特性及参数敏感性分析[J]. 地球物理学报,2021,64(6):2210–2219. doi: 10.6038/cjg2021O0087

    ZHANG Pan, DENG Shaogui, HU Xufei, et al. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement[J]. Chinese Journal of Geophysics, 2021, 64(6): 2210–2219. doi: 10.6038/cjg2021O0087

    [18] 黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132

    [19]

    WILSON G, MARCHANT D, HABER E, et al. Real-time 3D inversion of ultra-deep resistivity logging-while-drilling data[R]. SPE 196141, 2019.

    [20]

    WU Zhenguan, LI Hu, HAN Yujiao, et al. Effects of formation structure on directional electromagnetic logging while drilling measurements[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110118. doi: 10.1016/j.petrol.2022.110118

    [21]

    ZHONG Lili, LI Jing, BHARDWAJ A, et al. Computation of triaxial induction logging tools in layered anisotropic dipping formations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1148–1163. doi: 10.1109/TGRS.2008.915749

    [22]

    HONG Decheng, XIAO Jiaqi, ZHANG Guoyan, et al. Characteristics of the sum of cross-components of triaxial induction logging tool in layered anisotropic formation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3107–3115. doi: 10.1109/TGRS.2013.2269714

  • 期刊类型引用(8)

    1. 田海涛. 浅析龙凤山北210区块钻井施工难点及控制措施. 中国石油和化工标准与质量. 2022(23): 92-94+97 . 百度学术
    2. 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 . 本站查看
    3. 孙明杰,杨兴福,姜泉. 长岭区块钻井液施工井下复杂分析. 化工管理. 2021(08): 182-183 . 百度学术
    4. 薛懿伟,陈立强,徐鲲,杨保健. 渤中19-6大气田深部潜山硬地层钻井提速技术研究与应用. 中国海上油气. 2020(04): 140-146 . 百度学术
    5. 黄乘升. 龙凤山气田中基性火山岩钻井提速提效技术. 工业技术创新. 2020(05): 125-131 . 百度学术
    6. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    7. 胡群爱,孙连忠,张进双,张俊,刘仕银. 硬地层稳压稳扭钻井提速技术. 石油钻探技术. 2019(03): 107-112 . 本站查看
    8. 陈业鹏. 后五家户复杂深井钻井提速难点及技术探索. 探矿工程(岩土钻掘工程). 2018(07): 10-13 . 百度学术

    其他类型引用(4)

图(11)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  117
  • PDF下载量:  86
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-10-12
  • 网络出版日期:  2022-11-06
  • 刊出日期:  2022-12-07

目录

    /

    返回文章
    返回