抗高温高密度生物质钻井液体系研究及应用

周启成, 梁应红, 单海霞, 黄桃, 国安平, 王俊祥

周启成,梁应红,单海霞,等. 抗高温高密度生物质钻井液体系研究及应用[J]. 石油钻探技术,2022, 50(6):78-84. DOI: 10.11911/syztjs.2022109
引用本文: 周启成,梁应红,单海霞,等. 抗高温高密度生物质钻井液体系研究及应用[J]. 石油钻探技术,2022, 50(6):78-84. DOI: 10.11911/syztjs.2022109
ZHOU Qicheng, LIANG Yinghong, SHAN Haixia, et al. Research and application of a high-temperature resistant and high-density biomass drilling fluid system [J]. Petroleum Drilling Techniques,2022, 50(6):78-84. DOI: 10.11911/syztjs.2022109
Citation: ZHOU Qicheng, LIANG Yinghong, SHAN Haixia, et al. Research and application of a high-temperature resistant and high-density biomass drilling fluid system [J]. Petroleum Drilling Techniques,2022, 50(6):78-84. DOI: 10.11911/syztjs.2022109

抗高温高密度生物质钻井液体系研究及应用

基金项目: 中国石化集团公司科技攻关项目“抗温抗盐生物质合成树脂降滤失剂研制”(编号:JP18038-1)、中石化石油工程公司科技攻关项目“水基钻井液用生物质合成树脂降滤失剂研制”(编号:SG19-82K)资助
详细信息
    作者简介:

    周启成(1988—),男,广东梅州人,2013年毕业于长江大学石油工程专业,2016年获长江大学油气井工程专业硕士学位,工程师,主要从事生物质功能材料(油田化学品)研发工作。E-mail:625687692@qq.com

  • 中图分类号: TE254

Research and Application of a High-Temperature Resistant and High-Density Biomass Drilling Fluid System

  • 摘要:

    为了提高抗高温高密度钻井液体系的高温稳定性及环保性能,以自主研发的生物质合成树脂降滤失剂、抑制剂和润滑剂为核心处理剂,对处理剂加量进行优化,构建了抗高温高密度生物质钻井液体系。性能评价结果表明:该体系抗温可达200 ℃,抗1.0%CaCl2污染,岩屑滚动回收率达94.3%,润滑系数≤0.128,生物毒性EC50为89 230 mg/L。现场应用表明,抗高温高密度生物质钻井液具有较好的抗污染能力,在密度达2.55 kg/L、井底温度达140 ℃的情况下其仍具有很好的流变稳定性能。抗高温高密度生物质钻井液促进了生物质资源在钻井液领域的利用,解决了高密度水基钻井液抗温性与环保性相矛盾的问题,具有较好的现场推广应用价值。

    Abstract:

    In order to improve the temperature stability and environmental protection performance of a high-temperature resistant and high-density drilling fluid system, the self-developed filtrate reducers, inhibitors, and lubricants with biomass synthetic resin were taken as the core treatment agents, the dosages of the treatment agents were optimized, and a high-temperature resistant and high-density biomass drilling fluid system was constructed. The performance evaluation results showed that the system could resist temperature up to 200 °C. It also could resist CaCl2 pollution of 1%. The rock cuttings rolling recovery was 94.3%, with the lubrication coefficient ≤ 0.128. The biological toxicity EC50 value was 89 230 mg/L. The field application showed that the high-temperature resistant and high-density biomass drilling fluids could significantly resist pollution. They had excellent rheological stability when the density was up to 2.55 kg/L and the bottom hole temperature was 140 °C. The high-temperature resistant and high-density biomass drilling fluids can promote the utilization of biomass resources in the drilling fluid field and solve the trade-off between the temperature resistance and environmental protection of high-density water-based drilling fluids. Therefore, the drilling fluids have positive field promotion and application value.

  • 图  1   生物质合成树脂降滤失剂红外光谱

    Figure  1.   Infrared spectroscopy of filtrate reducers with biomass synthetic resin

    图  2   不同密度抗高温高密度生物质钻井液的润滑系数

    Figure  2.   Lubrication coefficient of high-temperature resistant and high-density biomass drilling fluids with different densities

    表  1   基浆加入不同量降滤失剂时的基本性能

    Table  1   Basic properties of drilling fluids with different dosages of filtrate reducers

    降滤失剂
    加量,%
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    API滤失
    量/mL
    高温高压
    滤失量/mL
    2.028.01810.01858.6
    4.030.51713.51226.4
    6.032.51517.5 822.8
    下载: 导出CSV

    表  2   钠膨润土基浆加入不同量抑制剂时的抑制性能

    Table  2   Inhibition properties of sodium bentonite drilling fluids with different dosages of inhibitors

    抑制剂加量,
    %
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    相对抑制率,
    %
    085.0 679.0
    0.325.017 8.089.1
    0.516.512 4.593.2
    0.7 7.5 5 2.596.6
    1.0 6.5 6 0.598.6
    下载: 导出CSV

    表  3   基浆加入不同量润滑剂时的润滑性能

    Table  3   Lubricating properties of drilling fluids with different lubricant contents

    润滑剂加量,%润滑系数润滑系数减小率,%
    00.425
    0.50.08280.71
    1.00.03990.82
    1.50.03591.76
    2.00.03392.24
    2.50.03192.71
    3.00.02893.41
    下载: 导出CSV

    表  4   不同温度下抗高温高密度生物质钻井液的基本性能

    Table  4   Basic properties of high-temperature resistant and high-density biomass drilling fluids at different temperatures

    老化温度/℃表观黏度/(mPa·s)塑性黏度/(mPa·s)动切力/Pa静切力/PaAPI滤失量/mL高温高压滤失量/mL
    初切终切
    120312471.05.01.2 8
    160383441.55.51.6 9
    180312382.06.51.810
    200403193.08.02.414
    下载: 导出CSV

    表  5   不同密度抗高温高密度生物质钻井液的基本性能

    Table  5   Basic properties of high-temperature resistant and high-density biomass drilling fluids with different densities

    密度/(kg·L−1表观黏度/(mPa·s)塑性黏度/(mPa·s)动切力/Pa静切力/PaAPI滤失量/mL高温高压滤失量/mL
    初切终切
    1.8039.033.0 6.01.03.53.213
    2.1040.031.0 9.03.08.02.414
    2.3055.043.012.02.58.52.612
    2.4061.556.0 5.51.57.03.614
    下载: 导出CSV

    表  6   抗高温高密度生物质钻井液环保性能测试结果

    Table  6   Test results of environmental protection performance of high-temperature resistant and high-density biomass drilling fluids

    名称生物毒性EC50/(mg·L−1生物可降解性
    降滤失剂LDR620 0000.26
    抑制剂SW-A112 0000.47
    润滑剂ZYRH-1151 4000.51
    抗高温生物质钻井液 89 2300.17
    下载: 导出CSV

    表  7   不同钙离子加量下的抗高温高密度生物质钻井液性能

    Table  7   Performance of high-temperature resistant and high-density biomass drilling fluids with different calcium ion dosages

    氯化钙
    加量,%
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切
    力/Pa
    静切力/PaAPI滤
    失量/mL
    高温高压
    滤失量/mL
    初切终切
    030.022.08.02.58.51.812
    0.231.023.08.03.513.52.210
    0.430.525.05.53.011.52.410
    0.840.035.05.03.014.02.814
    1.055.046.09.04.019.03.216
    下载: 导出CSV
  • [1] 樊相生,曾李,张勇,等. 元坝地区高密度超高密度钻井液技术[J]. 钻井液与完井液,2014,31(2):31–34. doi: 10.3969/j.issn.1001-5620.2014.02.009

    FAN Xiangsheng, ZENG Li, ZHANG Yong, et al. Ultra-high density drilling fluid technology used in Yuanba[J]. Drilling Fluid & Completion Fluid, 2014, 31(2): 31–34. doi: 10.3969/j.issn.1001-5620.2014.02.009

    [2] 马鸿彦,郑邦贤,陈景旺,等. 杨税务潜山超深超高温井安全优快钻井技术[J]. 石油钻采工艺,2020,42(5):573–577. doi: 10.13639/j.odpt.2020.05.008

    MA Hongyan, ZHENG Bangxian, CHEN Jingwang, et al. Optimized, safe and fast drilling technologies used in the ultra deep and high temperature wells in Yangshuiwu buried hill[J]. Oil Drilling & Production Technology, 2020, 42(5): 573–577. doi: 10.13639/j.odpt.2020.05.008

    [3] 王志远,黄维安,范宇,等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术,2021,49(5):31–38. doi: 10.11911/syztjs.2021039

    WANG Zhiyuan, HUANG Weian, FAN Yu, et al. Technical research and application of oil base drilling fluid with strong plugging property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31–38. doi: 10.11911/syztjs.2021039

    [4] 李斌,石秉忠,彭商平,等. 元坝地区高密度钻井液CO2污染处理技术[J]. 钻井液与完井液,2013,30(5):22–24. doi: 10.3969/j.issn.1001-5620.2013.05.006

    LI Bin, SHI Bingzhong, PENG Shangping, et al. CO2 contamination treatment technology of high density drilling fluid in block of Yuanba[J]. Drilling Fluid & Completion Fluid, 2013, 30(5): 22–24. doi: 10.3969/j.issn.1001-5620.2013.05.006

    [5] 蒲晓林,黄林基,罗兴树,等. 深井高密度水基钻井液流变性、造壁性控制原理[J]. 天然气工业,2001,21(6):48–51. doi: 10.3321/j.issn:1000-0976.2001.06.015

    PU Xiaolin, HUANG Linji, LUO Xingshu, et al. Principles controlling the rheological property and wall building property of deep well high density water-base drilling fluid[J]. Natural Gas Industry, 2001, 21(6): 48–51. doi: 10.3321/j.issn:1000-0976.2001.06.015

    [6] 张喜凤,李天太,施里宇,等. 深井抗高温高密度盐水钻井液实验研究[J]. 西安石油大学学报(自然科学版),2007,22(5):37–40.

    ZHANG Xifeng, LI Tiantai, SHI Liyu, et al. Experimental study of the high-density salt water drilling fluid with high-temperature resistance for deep wells[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2007, 22(5): 37–40.

    [7] 李林,黄文章,向林,等. 高效环保型页岩气开发水基钻井液体系研究[J]. 石油与天然气化工,2017,46(6):71–74. doi: 10.3969/j.issn.1007-3426.2017.06.013

    LI Lin, HUANG Wenzhang, XIANG Lin, et al. Study of water-based drilling fluid system with high efficiency and environment-friendly for shale gas development[J]. Chemical Engineering of Oil and Gas, 2017, 46(6): 71–74. doi: 10.3969/j.issn.1007-3426.2017.06.013

    [8] 宿振国,王瑞和,刘均一,等. 高性能环保水基钻井液的研究与应用[J]. 钻井液与完井液,2021,38(5):576–582.

    SU Zhenguo, WANG Ruihe, LIU Junyi, et al. Study and application of environmentally friendly high performance water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 576–582.

    [9] 周启成,单海霞,位华,等. 环保型生物质合成树脂降滤失剂[J]. 钻井液与完井液,2020,37(5):593–596.

    ZHOU Qicheng, SHAN Haixia, WEI Hua, et al. A synthetic resin filter loss reducer made from environmentally friendly biomasses[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 593–596.

    [10] 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用[J]. 断块油气田,2021,28(6):761–764.

    SONG Hai, LONG Wu, DENG Xiongwei. Development and application of high temperature resistant and environmental protection lubricant for shale gas water-based drilling fluid[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 761–764.

    [11] 李钟,罗石琼,罗恒荣,等. 多元协同防塌钻井液技术在临盘油田探井的应用[J]. 断块油气田,2019,26(1):97–100. doi: 10.6056/dkyqt201901022

    LI Zhong, LUO Shiqiong, LUO Hengrong, et al. Application of multivariate synergistic anti-caving drilling fluid technology in exploratory wells of Linpan Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 97–100. doi: 10.6056/dkyqt201901022

    [12] 宣扬,刘珂,郭科佑,等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏,2020,27(3):163–168. doi: 10.3969/j.issn.1006-6535.2020.03.027

    XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low friction drilling fluid technology of ultra-deep horizontal well in Shunbei Oil & Gas Field[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 163–168. doi: 10.3969/j.issn.1006-6535.2020.03.027

    [13] 张晓刚,单海霞,李彬,等. 环保无荧光生物质润滑剂ZYRH的性能与应用[J]. 油田化学,2019,36(2):196–200. doi: 10.19346/j.cnki.1000-4092.2019.02.002

    ZHANG Xiaogang, SHAN Haixia, LI Bin, et al. Development and application of an environment-friendly and non-fluorescent biomass lubricant[J]. Oilfield Chemistry, 2019, 36(2): 196–200. doi: 10.19346/j.cnki.1000-4092.2019.02.002

    [14] 钱晓琳,宣扬,林永学,等. 钻井液环保润滑剂SMLUB-E的研制及应用[J]. 石油钻探技术,2020,48(1):34–39. doi: 10.11911/syztjs.2019113

    QIAN Xiaolin, XUAN Yang, LIN Yongxue, et al. Development and application of an environmental-friendly drilling fluid lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34–39. doi: 10.11911/syztjs.2019113

    [15] 罗人文,龙大清,王昆,等. 马深1井超深井钻井液技术[J]. 石油钻采工艺,2016,38(5):588–593. doi: 10.13639/j.odpt.2016.05.009

    LUO Renwen, LONG Daqing, WANG Kun, et al. Drilling fluid for the super-deep Well Mashen-1[J]. Oil Drilling & Production Technology, 2016, 38(5): 588–593. doi: 10.13639/j.odpt.2016.05.009

  • 期刊类型引用(2)

    1. 笱顺超,杨顺智,王飞,刘俊,王斌,袁晓琪. 苏里格西区含水气藏识别方法研究. 内蒙古石油化工. 2024(07): 102-105+116 . 百度学术
    2. 刘昊年,刘成川,黎华继,马增彪. 川西坳陷东坡低电阻率储层特征及主控因素. 天然气技术与经济. 2017(06): 1-3+8+81 . 百度学术

    其他类型引用(0)

图(2)  /  表(7)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  122
  • PDF下载量:  62
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-03-04
  • 修回日期:  2022-10-15
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2022-12-07

目录

    /

    返回文章
    返回