Research and Application of a High-Temperature Resistant and High-Density Biomass Drilling Fluid System
-
摘要:
为了提高抗高温高密度钻井液体系的高温稳定性及环保性能,以自主研发的生物质合成树脂降滤失剂、抑制剂和润滑剂为核心处理剂,对处理剂加量进行优化,构建了抗高温高密度生物质钻井液体系。性能评价结果表明:该体系抗温可达200 ℃,抗1.0%CaCl2污染,岩屑滚动回收率达94.3%,润滑系数≤0.128,生物毒性EC50为89 230 mg/L。现场应用表明,抗高温高密度生物质钻井液具有较好的抗污染能力,在密度达2.55 kg/L、井底温度达140 ℃的情况下其仍具有很好的流变稳定性能。抗高温高密度生物质钻井液促进了生物质资源在钻井液领域的利用,解决了高密度水基钻井液抗温性与环保性相矛盾的问题,具有较好的现场推广应用价值。
Abstract:In order to improve the temperature stability and environmental protection performance of a high-temperature resistant and high-density drilling fluid system, the self-developed filtrate reducers, inhibitors, and lubricants with biomass synthetic resin were taken as the core treatment agents, the dosages of the treatment agents were optimized, and a high-temperature resistant and high-density biomass drilling fluid system was constructed. The performance evaluation results showed that the system could resist temperature up to 200 °C. It also could resist CaCl2 pollution of 1%. The rock cuttings rolling recovery was 94.3%, with the lubrication coefficient ≤ 0.128. The biological toxicity EC50 value was 89 230 mg/L. The field application showed that the high-temperature resistant and high-density biomass drilling fluids could significantly resist pollution. They had excellent rheological stability when the density was up to 2.55 kg/L and the bottom hole temperature was 140 °C. The high-temperature resistant and high-density biomass drilling fluids can promote the utilization of biomass resources in the drilling fluid field and solve the trade-off between the temperature resistance and environmental protection of high-density water-based drilling fluids. Therefore, the drilling fluids have positive field promotion and application value.
-
Keywords:
- drilling fluid /
- biomass /
- high density /
- environmental protection performance /
- stability /
- temperature resistance
-
-
表 1 基浆加入不同量降滤失剂时的基本性能
Table 1 Basic properties of drilling fluids with different dosages of filtrate reducers
降滤失剂
加量,%表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
PaAPI滤失
量/mL高温高压
滤失量/mL2.0 28.0 18 10.0 18 58.6 4.0 30.5 17 13.5 12 26.4 6.0 32.5 15 17.5 8 22.8 表 2 钠膨润土基浆加入不同量抑制剂时的抑制性能
Table 2 Inhibition properties of sodium bentonite drilling fluids with different dosages of inhibitors
抑制剂加量,
%表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
Pa相对抑制率,
%0 85.0 6 79.0 0.3 25.0 17 8.0 89.1 0.5 16.5 12 4.5 93.2 0.7 7.5 5 2.5 96.6 1.0 6.5 6 0.5 98.6 表 3 基浆加入不同量润滑剂时的润滑性能
Table 3 Lubricating properties of drilling fluids with different lubricant contents
润滑剂加量,% 润滑系数 润滑系数减小率,% 0 0.425 0.5 0.082 80.71 1.0 0.039 90.82 1.5 0.035 91.76 2.0 0.033 92.24 2.5 0.031 92.71 3.0 0.028 93.41 表 4 不同温度下抗高温高密度生物质钻井液的基本性能
Table 4 Basic properties of high-temperature resistant and high-density biomass drilling fluids at different temperatures
老化温度/℃ 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量/mL 初切 终切 120 31 24 7 1.0 5.0 1.2 8 160 38 34 4 1.5 5.5 1.6 9 180 31 23 8 2.0 6.5 1.8 10 200 40 31 9 3.0 8.0 2.4 14 表 5 不同密度抗高温高密度生物质钻井液的基本性能
Table 5 Basic properties of high-temperature resistant and high-density biomass drilling fluids with different densities
密度/(kg·L−1) 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量/mL 初切 终切 1.80 39.0 33.0 6.0 1.0 3.5 3.2 13 2.10 40.0 31.0 9.0 3.0 8.0 2.4 14 2.30 55.0 43.0 12.0 2.5 8.5 2.6 12 2.40 61.5 56.0 5.5 1.5 7.0 3.6 14 表 6 抗高温高密度生物质钻井液环保性能测试结果
Table 6 Test results of environmental protection performance of high-temperature resistant and high-density biomass drilling fluids
名称 生物毒性EC50/(mg·L−1) 生物可降解性 降滤失剂LDR 620 000 0.26 抑制剂SW-A 112 000 0.47 润滑剂ZYRH-1 151 400 0.51 抗高温生物质钻井液 89 230 0.17 表 7 不同钙离子加量下的抗高温高密度生物质钻井液性能
Table 7 Performance of high-temperature resistant and high-density biomass drilling fluids with different calcium ion dosages
氯化钙
加量,%表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切
力/Pa静切力/Pa API滤
失量/mL高温高压
滤失量/mL初切 终切 0 30.0 22.0 8.0 2.5 8.5 1.8 12 0.2 31.0 23.0 8.0 3.5 13.5 2.2 10 0.4 30.5 25.0 5.5 3.0 11.5 2.4 10 0.8 40.0 35.0 5.0 3.0 14.0 2.8 14 1.0 55.0 46.0 9.0 4.0 19.0 3.2 16 -
[1] 樊相生,曾李,张勇,等. 元坝地区高密度超高密度钻井液技术[J]. 钻井液与完井液,2014,31(2):31–34. doi: 10.3969/j.issn.1001-5620.2014.02.009 FAN Xiangsheng, ZENG Li, ZHANG Yong, et al. Ultra-high density drilling fluid technology used in Yuanba[J]. Drilling Fluid & Completion Fluid, 2014, 31(2): 31–34. doi: 10.3969/j.issn.1001-5620.2014.02.009
[2] 马鸿彦,郑邦贤,陈景旺,等. 杨税务潜山超深超高温井安全优快钻井技术[J]. 石油钻采工艺,2020,42(5):573–577. doi: 10.13639/j.odpt.2020.05.008 MA Hongyan, ZHENG Bangxian, CHEN Jingwang, et al. Optimized, safe and fast drilling technologies used in the ultra deep and high temperature wells in Yangshuiwu buried hill[J]. Oil Drilling & Production Technology, 2020, 42(5): 573–577. doi: 10.13639/j.odpt.2020.05.008
[3] 王志远,黄维安,范宇,等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术,2021,49(5):31–38. doi: 10.11911/syztjs.2021039 WANG Zhiyuan, HUANG Weian, FAN Yu, et al. Technical research and application of oil base drilling fluid with strong plugging property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31–38. doi: 10.11911/syztjs.2021039
[4] 李斌,石秉忠,彭商平,等. 元坝地区高密度钻井液CO2污染处理技术[J]. 钻井液与完井液,2013,30(5):22–24. doi: 10.3969/j.issn.1001-5620.2013.05.006 LI Bin, SHI Bingzhong, PENG Shangping, et al. CO2 contamination treatment technology of high density drilling fluid in block of Yuanba[J]. Drilling Fluid & Completion Fluid, 2013, 30(5): 22–24. doi: 10.3969/j.issn.1001-5620.2013.05.006
[5] 蒲晓林,黄林基,罗兴树,等. 深井高密度水基钻井液流变性、造壁性控制原理[J]. 天然气工业,2001,21(6):48–51. doi: 10.3321/j.issn:1000-0976.2001.06.015 PU Xiaolin, HUANG Linji, LUO Xingshu, et al. Principles controlling the rheological property and wall building property of deep well high density water-base drilling fluid[J]. Natural Gas Industry, 2001, 21(6): 48–51. doi: 10.3321/j.issn:1000-0976.2001.06.015
[6] 张喜凤,李天太,施里宇,等. 深井抗高温高密度盐水钻井液实验研究[J]. 西安石油大学学报(自然科学版),2007,22(5):37–40. ZHANG Xifeng, LI Tiantai, SHI Liyu, et al. Experimental study of the high-density salt water drilling fluid with high-temperature resistance for deep wells[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2007, 22(5): 37–40.
[7] 李林,黄文章,向林,等. 高效环保型页岩气开发水基钻井液体系研究[J]. 石油与天然气化工,2017,46(6):71–74. doi: 10.3969/j.issn.1007-3426.2017.06.013 LI Lin, HUANG Wenzhang, XIANG Lin, et al. Study of water-based drilling fluid system with high efficiency and environment-friendly for shale gas development[J]. Chemical Engineering of Oil and Gas, 2017, 46(6): 71–74. doi: 10.3969/j.issn.1007-3426.2017.06.013
[8] 宿振国,王瑞和,刘均一,等. 高性能环保水基钻井液的研究与应用[J]. 钻井液与完井液,2021,38(5):576–582. SU Zhenguo, WANG Ruihe, LIU Junyi, et al. Study and application of environmentally friendly high performance water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 576–582.
[9] 周启成,单海霞,位华,等. 环保型生物质合成树脂降滤失剂[J]. 钻井液与完井液,2020,37(5):593–596. ZHOU Qicheng, SHAN Haixia, WEI Hua, et al. A synthetic resin filter loss reducer made from environmentally friendly biomasses[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 593–596.
[10] 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用[J]. 断块油气田,2021,28(6):761–764. SONG Hai, LONG Wu, DENG Xiongwei. Development and application of high temperature resistant and environmental protection lubricant for shale gas water-based drilling fluid[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 761–764.
[11] 李钟,罗石琼,罗恒荣,等. 多元协同防塌钻井液技术在临盘油田探井的应用[J]. 断块油气田,2019,26(1):97–100. doi: 10.6056/dkyqt201901022 LI Zhong, LUO Shiqiong, LUO Hengrong, et al. Application of multivariate synergistic anti-caving drilling fluid technology in exploratory wells of Linpan Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 97–100. doi: 10.6056/dkyqt201901022
[12] 宣扬,刘珂,郭科佑,等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏,2020,27(3):163–168. doi: 10.3969/j.issn.1006-6535.2020.03.027 XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low friction drilling fluid technology of ultra-deep horizontal well in Shunbei Oil & Gas Field[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 163–168. doi: 10.3969/j.issn.1006-6535.2020.03.027
[13] 张晓刚,单海霞,李彬,等. 环保无荧光生物质润滑剂ZYRH的性能与应用[J]. 油田化学,2019,36(2):196–200. doi: 10.19346/j.cnki.1000-4092.2019.02.002 ZHANG Xiaogang, SHAN Haixia, LI Bin, et al. Development and application of an environment-friendly and non-fluorescent biomass lubricant[J]. Oilfield Chemistry, 2019, 36(2): 196–200. doi: 10.19346/j.cnki.1000-4092.2019.02.002
[14] 钱晓琳,宣扬,林永学,等. 钻井液环保润滑剂SMLUB-E的研制及应用[J]. 石油钻探技术,2020,48(1):34–39. doi: 10.11911/syztjs.2019113 QIAN Xiaolin, XUAN Yang, LIN Yongxue, et al. Development and application of an environmental-friendly drilling fluid lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34–39. doi: 10.11911/syztjs.2019113
[15] 罗人文,龙大清,王昆,等. 马深1井超深井钻井液技术[J]. 石油钻采工艺,2016,38(5):588–593. doi: 10.13639/j.odpt.2016.05.009 LUO Renwen, LONG Daqing, WANG Kun, et al. Drilling fluid for the super-deep Well Mashen-1[J]. Oil Drilling & Production Technology, 2016, 38(5): 588–593. doi: 10.13639/j.odpt.2016.05.009
-
期刊类型引用(2)
1. 笱顺超,杨顺智,王飞,刘俊,王斌,袁晓琪. 苏里格西区含水气藏识别方法研究. 内蒙古石油化工. 2024(07): 102-105+116 . 百度学术
2. 刘昊年,刘成川,黎华继,马增彪. 川西坳陷东坡低电阻率储层特征及主控因素. 天然气技术与经济. 2017(06): 1-3+8+81 . 百度学术
其他类型引用(0)