Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models
-
摘要:
经CO2多轮吞吐后,华北某稠油油藏增油效果逐年变差,为进一步改善开发效果,采用N2泡沫/CO2复合吞吐提高原油采收率。为明确N2泡沫/CO2复合吞吐提高原油采收率机理,通过泡沫体系动、静态性能评价试验,评价了N2泡沫体系的封堵性能;采用自主研制的三维非均质物理模型开展了N2泡沫/CO2复合吞吐室内物理模拟试验,分析了N2泡沫与CO2复合提高采收率的效果及其相关机理。试验结果表明,质量分数0.3%的α-烯烃磺酸钠(AOS)和质量分数0.3%的聚丙烯酰胺(HPAM)可形成稳定的泡沫体系,其封堵率达到99.57%,可实现对高渗层的有效封堵。三维试验结果表明,N2泡沫/CO2复合吞吐可使采收率提高22.74百分点,吞吐过程中含水率最低可降至2.07%,有效作用期是纯CO2吞吐的2.5~3.0倍。N2泡沫/CO2复合吞吐可有效扩大CO2和后续水的波及体积,为其后续现场应用提供理论支撑。
Abstract:The oil increment of a heavy oil reservoir in North China decreases gradually year by year after multiple CO2 huff and puff operations. In order to improve the developmental effect, CO2 huff and puff combined with N2 foam was proposed to enhance the oil recovery. Evaluation experiments on dynamic and static performances of foam systems were conducted to clarify the mechanism of CO2 huff and puff combined with N2 foam in enhancing oil recovery and assess the plugging performance of N2 foam systems. Then, a self-designed three-dimensional heterogeneous physical model was used to carry out laboratory physical simulation experiments on CO2 huff and puff combined with N2 foam, with the effect of which on improving oil recovery and related mechanisms studied. Experimental results showed that a stable foam system could be formed by using α-olefin sulfonate (AOS) and polyacrylamide (HPAM) both with a mass fraction of 0.3%, and the plugging ratio could reach 99.57%, which thus effectively plugged high permeable layers. The results of three-dimensional experiments showed that CO2 huff and puff combined with N2 foam could improve the oil recovery by 22.74 percentage points, and the water cut could be reduced to as low as 2.07% during huff and puff operations, with its effective action period lasting 2.5–3.0 times that of pure CO2 huff and puff. The CO2 huff and puff combined with N2 foam can effectively enlarge the swept volumes of CO2 and subsequent water, which provides theoretical support for its future field applications.
-
-
表 1 试验岩心的基础物性参数
Table 1 Basic physical parameters of test cores
编号 泡沫注入量/PV 孔隙体积/mL 气测渗透率/mD 孔隙度,% 1 0.01 207 2 827 34.07 2 0.03 204 2 718 33.58 3 0.05 210 3 137 34.57 4 0.08 213 3 359 35.06 表 2 不同配方泡沫体系的综合指数
Table 2 Composite indexes of foam systems with different formulas
编号 AOS质量
分数,%HPAM质量
分数,%泡沫综合指数/
(mL·min)1 0.1 54 252 2 0.2 61 664 3 0.3 0.3 75 094 4 0.4 83 025 5 0.5 87 995 6 0.1 7 665 7 0.2 38 745 8 0.3 0.3 75 094 9 0.4 91 800 10 0.5 99 693 表 3 N2泡沫体系封堵性能评价结果
Table 3 Evaluation results of plugging effect of N2 foam systems
编号 泡沫
气液比水驱平衡
压差/kPa泡沫稳定
压差/kPa阻力
系数封堵
率,%1 1∶2 6.02 556.17 92.29 98.92 2 1.0∶1.5 4.94 740.43 149.88 99.33 3 1∶1 5.09 1190.09 233.96 99.57 4 2∶1 5.07 1049.09 206.79 99.51 表 4 纯CO2吞吐和N2泡沫/CO2复合吞吐三维物理模拟试验结果
Table 4 Results of three-dimensional physical simulation experiments on CO2 huff and puff combined with N2 foam and pure CO2 huff and puff
编号 试验方案 吞吐轮次 注入量 采收率增幅/百分点 最低含水率,% 有效期内吞吐量/PV 泡沫/mL CO2/mL(标况) 1 纯CO2吞吐 1 1 128 1.71 61.10 0.09 2 1 200 3.18 54.73 0.12 3 1 443 2.95 45.95 0.13 4 1 228 2.75 58.01 0.12 均值 1 250 2.65 54.95 0.12 总和 5 000 10.59 0.46 2 N2泡沫/CO2
复合吞吐1 40 1 138 8.98 2.07 0.39 2 40 1 130 4.36 31.29 0.28 3 40 1 035 5.11 65.01 0.28 4 40 1 095 4.29 58.42 0.24 均值 40 1 100 5.69 39.20 0.30 总和 160 4 400 22.74 1.19 -
[1] 王晓燕,章杨,张杰,等. 稠油油藏注CO2吞吐提高采收率机制[J]. 中国石油大学学报(自然科学版),2021,45(6):102–111. WANG Xiaoyan, ZHANG Yang, ZHANG Jie, et al. EOR mechanisms of CO2 huff and puff process for heavy oil recovery[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 102–111.
[2] 郭文轩,赵仁保,陈昌剑. CO2对春17井区稠油的溶解降黏特性及吞吐效果[J]. 西安石油大学学报((自然科学版),2021,36(1):66–72. GUO Wenxuan, ZHAO Renbao, CHEN Changjian. Dissolution viscosity-reducing performance and huff-puff effect of CO2 to heavy oil in Chun-17 Wellblock[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2021, 36(1): 66–72.
[3] ZHOU Xiang, YUAN Qingwang, PENG Xiaolong, et al. A critical review of the CO2 huff ‘n’ puff process for enhanced heavy oil recovery[J]. Fuel, 2018, 215: 813–824. doi: 10.1016/j.fuel.2017.11.092
[4] AHADI A, TORABI F. Effect of light hydrocarbon solvents on the performance of CO2-based cyclic solvent injection (CSI) in heavy oil systems[J]. Journal of Petroleum Science and Engineering, 2018, 163: 526–537. doi: 10.1016/j.petrol.2017.12.062
[5] 毕永斌,耿文爽,张雪娜,等. 高含水油藏全生命周期剩余油挖潜三参数研究[J]. 断块油气田,2021,28(1):109–114. BI Yongbin, GENG Wenshuang, ZHANG Xuena, et al. Study on three parameters of remaining oil potential tapping in high water cut reservoir during its whole life cycle[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 109–114.
[6] 史英,盖长城,颜菲,等. 稠油油藏CO2吞吐合理吞吐轮次[J]. 大庆石油地质与开发,2017,36(1):129–133. SHI Ying, GAI Changcheng, YAN Fei, et al. Reasonable cyclic times of CO2 huff and puff for heavy oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(1): 129–133.
[7] 张娟,周立发,张晓辉,等. 浅薄层稠油油藏水平井CO2吞吐效果[J]. 新疆石油地质,2018,39(4):485–491. ZHANG Juan, ZHOU Lifa, ZHANG Xiaohui, et al. Effects of CO2 huff and puff in horizontal wells in shallow-burial thin heavy oil reservoirs[J]. Xinjiang Petroleum Geology, 2018, 39(4): 485–491.
[8] 郝宏达,侯吉瑞,黄捍东,等. 冀东浅层稠油油藏CO2/N2复合气体吞吐提高采收率的可行性[J]. 油田化学,2020,37(1):80–85. HAO Hongda, HOU Jirui, HUANG Handong, et al. Feasibilty of gas-EOR using CO2/N2 mixture for a shallow-buried heavy oil reservoir in Jidong Oilfield[J]. Oilfield Chemistry, 2020, 37(1): 80–85.
[9] 郑玉飞,李翔,徐景亮,等. 渤海P油田层内生成CO2调驱技术[J]. 石油钻探技术,2020,48(2):108–112. ZHENG Yufei, LI Xiang, XU Jingliang, et al. In-situ CO2 generation technology in Bohai P Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 108–112.
[10] 赵凤兰,宋黎光,冯海如,等. 厚层砂岩油藏原油密度影响下的CO2驱重力超覆实验[J]. 断块油气田,2021,28(6):842–847. ZHAO Fenglan, SONG Liguang, FENG Hairu, et al. Experimental study of CO2 gravity segregation effected by off density in thick sandstone reservoirs[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 842–847.
[11] 张怿赫,盛家平,李情霞,等. CO2吞吐技术应用进展[J]. 特种油气藏,2021,28(6):1–10. ZHANG Yihe, SHENG Jiaping, LI Qingxia, et al. Advances in the application of CO2 stimulation technology[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 1–10.
[12] 赵凤兰,付忠凤,郝宏达,等. 氮气泡沫吞吐的控水增油机理[J]. 油田化学,2018,35(3):451–457. ZHAO Fenglan, FU Zhongfeng, HAO Hongda, et al. Mechanism of nitrogen foam preventing edge-water coning in huff-n-puff well[J]. Oilfield Chemistry, 2018, 35(3): 451–457.
[13] 王鹏,赵凤兰,侯吉瑞,等. 氮气泡沫吞吐抑制潜山底水油藏水平井底水锥进实验研究[J]. 油气地质与采收率,2018,25(5):110–115. WANG Peng, ZHAO Fenglan, HOU Jirui, et al. An experimental study of horizontal Bottom water coning control with nitrogen foam huff and puff in buried-hill reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 110–115.
[14] 周光林, 寇磊, 汤云浦, 等. 浅层天然水驱油藏氮气泡沫控水稳油技术研究[J]. 中国矿业, 2018, 27(增刊1): 361-364. ZHOU Guanglin, KOU Lei, TANG Yunpu, et al. Study on water control technology of nitrogen foam in shallow natural water drive reservoir[J]. China Mining Magazine, 2018, 27(supplement 1): 361-364.
[15] CHEN Danqi, ZHAO Hongwei, LIU Kun, et al. The effect of emulsion and foam on anti-water coning during nitrogen foam injection in bottom-water reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107766. doi: 10.1016/j.petrol.2020.107766
[16] 李兆敏,徐正晓,李宾飞,等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版),2019,43(5):118–127. LI Zhaomin, XU Zhengxiao, LI Binfei, et al. Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5): 118–127.
[17] 孙鹏霄,苏崇华,孟伟斌. 氮气泡沫在海上高含水油田选择性堵水中的应用[J]. 石油钻采工艺,2016,38(1):110–113. SUN Pengxiao, SU Chonghua, MENG Weibin. Application of nitrogen foam in selective water plugging of offshore high water content oil field[J]. Oil Drilling & Production Technology, 2016, 38(1): 110–113.
[18] HE Gang, LI Huabin, GUO Chengfei, et al. Stable foam systems for improving oil recovery under high-temperature and high-salt reservoir conditions[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110145. doi: 10.1016/j.petrol.2022.110145
[19] HANSSEN J E. Foam as a gas-blocking agent in petroleum reservoirs I: Empirical observations and parametric study[J]. Journal of Petroleum Science and Engineering, 1993, 10(2): 117–133. doi: 10.1016/0920-4105(93)90036-E
[20] 吕伟,刘笑春,白海龙,等. CO2响应性增强泡沫体系室内试验研究[J]. 石油钻探技术,2021,49(5):88–93. LYU Wei, LIU Xiaochun, BAI Hailong, et al. Laboratory test study of CO2 responsive enhanced foam system[J]. Petroleum Drilling Techniques, 2021, 49(5): 88–93.
[21] 张旋,张贵才,葛际江,等. 聚合物强化CO2泡沫稳定性能研究[J]. 断块油气田,2020,27(6):799–802. ZHANG Xuan, ZHANG Guicai, GE Jijiang, et al. Research on the stability of polymer enhanced CO2 foam[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 799–802.
[22] 牟汉生,陆文明,曹长霄,等. 深水浊积岩油藏提高采收率方法研究:以安哥拉X油藏为例[J]. 石油钻探技术,2021,49(2):79–89. MOU Hansheng, LU Wenming, CAO Changxiao, et al. Study on enhanced oil recovery method in deep-water turbidite reservoirs: a case study of X reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79–89.
-
期刊类型引用(5)
1. 甘建,仲莎莎,朱小龙,王德明,鲍庆国,张晓明,徐超航. 基于糖苷-阴非离子表面活性剂协同效应的抑尘泡沫特性研究. 中国安全生产科学技术. 2024(02): 169-176 . 百度学术
2. 王学慧,代玉杰,赵阳. 稠油提高采收率技术现状及发展趋势. 现代化工. 2024(10): 34-38+43 . 百度学术
3. 诸林,王东军,陈泳村. 一种吸收塔与脱甲烷塔相结合的乙烷回收改进新流程. 天然气工业. 2023(07): 101-107 . 百度学术
4. 姚光明,郭程飞,赵聪,高泽. 不同泡沫体系油藏适应性数值模拟. 断块油气田. 2023(05): 868-873 . 百度学术
5. 葛丽珍,孟智强,祝晓林,岳宝林,朱志强. 气顶边水油藏中后期开发调整三维物理模拟研究. 石油钻探技术. 2023(06): 85-92 . 本站查看
其他类型引用(0)