智能井井下液压控制信号传输特性研究

喻贵民, 许亮斌, 谢仁军, 盛磊祥, 何东升

喻贵民,许亮斌,谢仁军,等. 智能井井下液压控制信号传输特性研究[J]. 石油钻探技术,2022, 50(6):98-106. DOI: 10.11911/syztjs.2022099
引用本文: 喻贵民,许亮斌,谢仁军,等. 智能井井下液压控制信号传输特性研究[J]. 石油钻探技术,2022, 50(6):98-106. DOI: 10.11911/syztjs.2022099
YU Guimin, XU Liangbin, XIE Renjun, et al. Transmission characteristics of downhole hydraulic control signals in intelligent wells [J]. Petroleum Drilling Techniques,2022, 50(6):98-106. DOI: 10.11911/syztjs.2022099
Citation: YU Guimin, XU Liangbin, XIE Renjun, et al. Transmission characteristics of downhole hydraulic control signals in intelligent wells [J]. Petroleum Drilling Techniques,2022, 50(6):98-106. DOI: 10.11911/syztjs.2022099

智能井井下液压控制信号传输特性研究

基金项目: 国家科技重大专项“深水钻完井工程技术”(编号:2016ZX05028-001)资助
详细信息
    作者简介:

    喻贵民(1969—),男,江西南昌人,1992年毕业于西南石油学院矿业机械专业,2009年获西南石油大学机械设计及理论专业博士学位,高级工程师,主要从事海洋钻完井技术创新和成果转化工作。E-mail: yugm@cnooc.com.cn。

  • 中图分类号: TE257

Transmission Characteristics of Downhole Hydraulic Control Signalsin Intelligent Wells

  • 摘要:

    液压控制的智能井系统通过长达数千米的液压管线向井下传送液压控制信号和动力,选择目的层层位和控制流量。向井下传送液压控制信号时,受传输介质和细长液压管线的影响,液压控制信号的传输速度、强度和形态都会发生衰减和扭曲,难以被井下设备识别。为对井下执行器进行可靠的控制,讨论了液压控制信号的传输速度、井眼温度沿深度方向变化对传输介质黏度的影响;分析了井口压力向井下传播时压力与时间的变化关系、地面液压控制信号传到井下时的形态变化、同时施加液压控制信号和液压动力信号时的传输特性,以及有无阻力状态下开启井下滑套时控制压力的变化;再考虑管线内径、加压方式、井眼环境、液压油黏度等对上述传输特性的影响,得出液压控制压力应大于5 MPa、3 000 m深水井中井下液压信号传输时间约为25 min等定量评估结论。研究结论可为开展井下液压控制提供理论参考。

    Abstract:

    Hydraulically controlled intelligent well systems transmit control signals and power to the underground through thousands of meters of hydraulic control pipelines, and realize horizon selection in target layers and flow rate control. Transmitted downhole hydraulic control signals are affected by transmission media and slender transmission pipeline. Thus, the transmission speed, strength, and shapes of these signals are subject to attenuation and distortion, which are difficult to identify by the downhole equipment. To achieve sound control over the downhole actuator, this study discussed the influence of the signal transmission speed and wellbore temperature variation along the depth on the viscosity of transmission media. The following aspects were explored: the variation of pressure over time when the wellhead pressure propagated downward; the change in the shapes of ground control signals when they were transmitted underground; the transmission characteristics when hydraulic control signals and hydraulic power signals were applied simultaneously; the change in control pressure to open downhole sliding sleeves with or without resistance. In addition, upon consideration of the influence of different inner pipeline diameters, pressure applied methods, wellbore environments, and viscosity of hydraulic oil on the above transmission characteristics, several quantitative evaluation conclusions were drawn. For example, the hydraulic control pressure should be greater than 5 MPa, and the downhole transmission time for hydraulic signals in a deep-offshore well with a depth of 3 000 m was about 25 min. The research conclusions could provide a theoretical reference for downhole hydraulic control.

  • “三高”井试油压裂工艺与常规油井不同,施工过程中由于工况苛刻易导致井下复杂,前期使用“两阀一封”试油测试工艺时存在井下工具失效、中高密度钻井液在高温条件下长时间静置易老化并堵塞管柱和埋卡封隔器等问题,为保障施工安全,研制了适用于不同井况的“三阀一封”、“四阀一封”和“五阀一封”测试管柱。

    新疆油田南缘西段深层高温高压油气井前期主要采用“三阀一封”的试油工艺,随着勘探评价逐步深入,地质条件更加复杂,必须经过压裂改造才能获得产能。2011年西湖1井压裂后RD(rupture disks)循环阀无法开启,压井困难。目前,“多阀一封”试油工艺存在封隔器失效、钢球堵塞管柱及射孔段下部替液不干净等问题[1-4]。压裂过程中泵压高,排量受限,改造不充分,因此,“多阀一封”试油工艺无法完全满足超深超高压井试油需求。为此,笔者在分析前期“三阀一封”试油工艺难点和需求的基础上,针对南缘西段高温高压低渗油井储层特点和施工作业难点,采取环空替入加重液降低施工套压和前置液顶替加重液防超压等技术措施,形成了“光油管”试油压裂一体化工艺,最大限度地实现丢枪后油管全通径,以满足压裂加砂改造需求[5-8]

    新疆油田南缘西段高泉地区白垩系清水河组以南部物源为主,储层埋藏深,地层压力130~145 MPa,地层温度140~150 ℃,基质孔隙度1.2 %~16.5 %,基质渗透率0.01~0.20 mD,岩性复杂,非均质性强,天然裂缝不同程度发育[9-11]。试油压裂的工艺难点主要包括:1)储层环境复杂。随着新疆油田南缘勘探评价加快推进,储层温度压力逐年升高,新疆油田南缘储层压力相比塔里木库车山前高出近20 MPa,严重制约试油、改造和建产;清水河组储层弹性模量高,闭合应力高,水力裂缝缝窄,加砂压裂困难,且受井身结构限制,压裂施工泵压高。2)受井身结构限制。南缘西段油井以四开井身结构为主,ϕ139.7 mm油层尾管长700~1119 m,区块标准化井身结构如图1所示,油层尾管直径及长度限制了大通径油管下深,压裂施工排量受限,区块平均施工排量3.0~4.5 m3/min,泵压高达111~129 MPa,泵压超高,施工风险高。同时,高温下密度大于2.30 kg/L试油工作液的性能难以保障,易发生测试封隔器与测试阀堵塞、工具埋卡等井下复杂,小井眼中复杂处理难度大、风险高,在超高地层压力、超高地层破裂压力(破裂压力达大于160 MPa)等综合因素影响下,南缘西段试油、压裂改造面临极大难度与风险,亟需开展工艺优化,保障施工安全[11-13]

    图  1  南缘西段井身结构示意
    Figure  1.  Casing program in the western section of the southern margin

    新疆油田南缘西段高温高压油井试油改造以降低试油成本、缩短试油周期和保障施工安全为主,前期采用“三阀一封”射孔压裂试油工艺。管柱组合为ϕ114.3 mm油管×12.7 mm×715 m+ϕ114.3 mm油管×10.9 mm×4 600 m+ϕ88.9 mm油管×9.5 mm×200 m+ϕ73.0 mm油管×7.0 mm×955 m+2号RD循环阀+1号RD循环阀+RDS阀+RTTS封隔器+存储式压力计+ϕ73.0 mm×5.5 mm 油管4根+减震器+ϕ73.0 mm×5.5 mm 油管4根+减震器+机械丢枪接头+筛管+射孔枪组。

    RDS阀、RD循环阀与RTTS封隔器内径均为38.0 mm,考虑缩径产生的节流效应,计算其在不同排量下的节流压差和施工泵压,结果如表1所示。由表1可以看出,在相同排量条件下,“三阀一封”试油管柱的施工泵压比光油管试油管柱高7.96~10.32 MPa,压裂过程中会出现排量受限、加砂难度大等问题。

    表  1  不同试油管柱节流压差与施工泵压预测
    Table  1.  Prediction of throttling differential pressure and pump pressure for different oil testing string
    排量/
    (m3∙min−1
    节流压差/
    MPa
    “光油管”施工
    泵压/MPa
    “三阀一封”管柱
    施工泵压/MPa
    2.57.96109.46117.42
    3.08.55111.96120.51
    3.59.14118.17127.31
    4.09.73125.06134.79
    4.510.32132.58142.90
    下载: 导出CSV 
    | 显示表格

    西湖1井前期试油压裂采用“三阀一封”的射孔测试联作管柱,由于受压裂冲蚀、高密度压井液和高温沉淀的影响,RDS(rupture disks safety)阀无法开启,循环压井困难、封隔器起出困难。RDS阀的结构如图2所示。

    图  2  RDS阀的结构
    Figure  2.  Structure of RDS valve

    排量4.5 m3/min、平均砂比15%、支撑剂视密度3350 kg/m3、支撑剂浓度240 kg/m3条件下,模拟计算RDS阀内部冲蚀云图如图3所示。由于RDS阀存在变径导致涡流,弹性爪根部易受冲蚀[14-16],压裂5 h,冲蚀导致RDS阀壁厚减少达11.6 mm,存在冲蚀破损或断裂导致芯轴无法下行、球阀无法关闭、循环通道无法开启的风险。因此,“三阀一封”试油工艺的适应性较差,需设计适用性更强的试油工艺。

    图  3  RDS阀冲蚀云图
    Figure  3.  RDS valve erosion cloud map

    依据南缘西段的井身结构,将试油压裂管柱设计为ϕ114.3 mm×12.7 mm油管+ϕ114.3mm×10.9 mm油管+ϕ88.9 mm×9.5 mm油管+ϕ73.02mm×7.0 mm油管+存储式压力计+ϕ73.0 mm×5.5 mm 油管4根+减震器+ϕ73.02 mm×5.5 mm 油管4根+减震器+机械丢枪接头+筛管+射孔枪组,最大限度实现大通径,丢枪后油管全通径以适应加砂压裂改造需求。试油压裂管柱所用油管的参数见表2

    表  2  南缘西段试油管柱所用油管的参数
    Table  2.  Tubing parameters used for oil testing string in the western section of the southern margin
    油管外径/
    mm
    钢级壁厚/
    mm
    内径/
    mm
    线质量/
    (kg∙m−1
    抗内压/
    MPa
    抗外压/
    MPa
    管体屈服强度/
    kN
    段长/
    m
    114.3P11012.7088.9032.14147.5149.83074715
    114.3P11010.9292.4628.13126.8131.126894600
    88.9P1109.5369.8418.90142.2145.11800200
    73.0P1107.0158.9811.61127.411.601103955
    下载: 导出CSV 
    | 显示表格

    针对南缘西段高温高压油井压裂、试油、关井等工况,采用Wellcat软件模拟计算带封隔器管柱与“光油管”管柱在相同工况条件下抗拉、抗压、抗外挤强度的三轴安全系数[17-18],结果如图4所示。

    图  4  不同排量下不同试油压裂管柱三轴安全系数
    Figure  4.  Triaxial safety factor of different oil testing fracturing string under different displacement

    1)采用带封隔器管柱时,由于封隔综合效应导致附加应力,井口及封隔器上部安全系数低。同时,为确保油管柱及封隔器安全,环空补压需达到60 MPa,才能保证三轴安全系数大于1.50,现场实施保障难度大,并且使用带封隔器的管柱,封隔器与RDS阀、RD循环阀等井下工具会造成管柱缩径,使压裂及试油过程中存在冲蚀风险。

    2)采用“光油管”管柱,相同工况条件下全井三轴安全系数大于2.00,相比于带封隔器管柱安全系数更高;若不加封隔器,则存在压裂过程中套管超压与试油作业时关井后套管超压的风险[19-21]

    “光油管”试油压裂过程中,井口处套管是整个井筒的薄弱点,计算不同工况、不同环空液体密度下的套压(见表3)。油套环空为密度1.00 kg/L清水时,压裂过程中套压95.91 MPa,压裂安全余量为3.09 MPa(套管限压99 MPa);油套环空为密度1.20 kg/L盐水时,压裂过程中套压83.08 MPa,压裂安全余量为15.92 MPa。由此可以看出,提高环空液体密度,可有效降低套压,保障压裂过程中井筒安全。综合考虑储层配伍性及成本控制,压裂前环空替入密度1.20 kg/L的KCl+NaCl复配盐水加重液,以提高井口限压。

    表  3  不同工况下的套压
    Table  3.  Casing pressure under different working conditions
    序号工况套压/
    MPa
    悬挂器位置
    压力/MPa
    油层中部
    压力/MPa
    1井筒试压
    (回接套管抗内压强度80%)
    99.00153.60163.09
    2压裂
    (环空液体密度1.00 kg/L)
    95.91150.54160.00
    3压裂
    (环空液体密度1.20 kg/L)
    83.08148.61160.00
    4压裂
    (环空液体密度1.30 kg/L)
    76.67147.64160.00
    下载: 导出CSV 
    | 显示表格

    利用Wellcat软件计算不同工况条件下油层套管的安全系数,考虑试油及生产过程中套管控压状况,油层套管抗外挤安全系数大于1.125,抗内压安全系数大于1.150,满足射孔、压裂、纯油关井等工况下的安全要求;同时,压裂前环空替入密度1.20 kg/L的盐水,纯油、纯气工况下套压最高控制在99 MPa,油层套管可满足排量3.5~4.5 m3/min的压裂要求。

    “光油管”工艺试油条件下油套连通,针对油层套管超压风险,优化设计定型了140 MPa油套管控压地面双流程,如图5所示。油管流程与套管流程分别在高压端并联、低压端并联,油气可通过油管、套管流程同时经除砂器、油嘴管汇、热交换器、分离器等装置进行生产作业,提高了生产效率,能够实现油套同时生产、套管应急泄压和正反压井,可通过地面设备保障试油全过程的井筒安全。

    图  5  油套管控压地面双流程
    Figure  5.  Tubing and casing control pressure ground dual process

    “光油管”试油压裂一体化技术先后在准噶尔盆地南缘西段应用了5井次,下面以高泉6井为例,介绍具体应用情况。高泉6井井储层埋深6530.00~6537.00 m,ϕ177.8 mm套管下深0~5560.00 m,ϕ139.7 mm套管下深5560.00~6758.27 m,地层压力144.26 MPa,破裂压力175.2 MPa,计算出A环空中为1.20 kg/L盐水时套压最高为99.00 MPa。采用ϕ114.3 mm油管+ϕ88.9 mm油管+ϕ73.0 mm油管+存储式压力计+丢枪射孔管柱进行压裂施工,优选射孔弹,增大射孔深度,降低破裂压力,管柱增加了丢枪装置,丢枪后实现管柱全通径。

    高泉 6 井压裂前采用ϕ2.0 mm油嘴试产,油压24.3 MPa,最高日产油量4.68 m3。压裂前全井筒替入密度1.20 kg/L的复配盐水,前置液阶段采用密度1.20 kg/L盐水造缝,以降低井口破裂压力,顶替液采用密度1.20 kg/L的原液,以降低顶替阶段施工泵压。施工排量3.5~4.2 m3/min,泵注过程全程高压,施工压力118.0~129.0 MPa,压力高于125.0 MPa持续时间54 min,套管压力88.0~99.0 MPa,加入高强度陶粒55 m3,平均砂比14.06 %,停泵时油压97.8 MPa、套压99.0 MPa,如图6所示。压裂后期净压力由5.0 MPa升至16.0 MPa,套压升高11.0 MPa,达到限压(99.0 MPa),环空替入加重液与环空未替入加重液相比,实际套压降低12.8 MPa,有效保障了套管柱安全,顺利完成压裂施工。

    图  6  高泉6井压裂施工曲线
    Figure  6.  Fracturing operation curve of Well Gaoquan 6

    压裂施工结束后,根据停泵压降曲线,确定停泵压力97.8 MPa,裂缝闭合时间42.7 min,压裂液效率43.6 %。拟合施工净压力,校正压裂模型,得到弹性模量20.8 GPa、泊松比0.24、储层最小水平主应力161.2 MPa,隔层最小水平主应力173.5 MPa,通过校正模型反演裂缝参数,得知形成分支裂缝2条,主裂缝半缝长226.50 m,缝高43.10 m,铺砂浓度4.76 kg/m2,压裂效果良好。停泵后,压力随时间下降加快,形成缝网范围大,与岩心地应力测试试验具备形成分支裂缝潜力的结论一致。压裂改造后,采用ϕ7.0 mm油嘴试产,油压46.32 MPa,日产油量126.81 m3,日产气量8300 m3

    1)“光油管”试油压裂一体化工艺采取环空替入加重液降低压裂施工套压、前置液顶替加重液防超压等措施,突破了高温高压井必须采用“三阀一封”试油工艺的局限。

    2)“光油管”试油压裂一体化工艺相比传统试油工艺,可有效降低试油成本,解决压裂泵压高、排量受限、测试阀冲蚀或超压失效等问题,为深层试油压裂测试创造有利条件。

    3)“光油管”试油压裂一体化工艺的成功应用,为深层高闭合应力储层改造探索了新工艺和新思路,可为高温高压超深地层试油压裂提供借鉴。

  • 图  1   不同含气量和压力下管线内压力波的传输速度

    Figure  1.   Pressure wave speed in the pipeline under different air content and pressures

    图  2   液压油运动黏度随井深的变化曲线

    Figure  2.   Variation curve of viscosity of hydraulic oil with well depth

    图  3   井深–压力传播时间平面上的差分网格

    Figure  3.   Differential grids on the plane of well depth and the transmission time of pressure

    图  4   流量达到0.9 L/min时管线内的压力分布

    Figure  4.   Pressure distribution in the pipeline at a flow rate of 0.9 L/min

    图  5   井口压力达到40 MPa时管线内压力分布

    Figure  5.   Pressure distribution in the pipeline under a wellhead pressure of 40 MPa

    图  6   0~4 000 s加压时间内管线内压力、井深与时间的关系曲面

    Figure  6.   Relation surface of pipeline pressure, well depth, and time during a pressure applied period of 0–4 000 s

    图  7   井口和井底管线内压力与时间的关系曲线

    Figure  7.   Variation curves for well head and bottom hole pressure in the pipeline over time

    图  8   液压信号传输特性试验装置的控制界面

    Figure  8.   Control interface of the hydraulic signal transmission characteristic test device

    图  9   试验测得和模拟计算所得管线出口压力

    Figure  9.   Tested and calculated pressures at pipeline ends

    图  10   试验和模拟计算管线出口压力与进口压力比

    Figure  10.   Ratios of tested and calculated pressures at pipeline ends to wellhead pressures

    图  11   井口、井底矩形波信号随时间的变化曲线

    Figure  11.   Variation curves of rectangular signals with time at well head and bottom hole

    图  12   井口和井底的矩形波信号对比

    Figure  12.   Comparison of rectangular signals at well head and bottom hole

    图  13   驱动无阻力井下滑套时井口和井底压力随时间的变化曲线

    Figure  13.   Variation curves of pressure over time at well head and bottom hole when powering downhole sliding sleeves without resistance

    图  14   驱动有阻力井下滑套时井口和井底压力随时间的变化曲线

    Figure  14.   Variation curves of pressure over time at well head and bottom hole when powering downhole sliding sleeves with resistance

    图  15   内径4.572和3.048 mm管线井底压力随时间的变化曲线

    Figure  15.   Variation curves of bottom hole pressure over time with inner diameters of 4.572 mm and 3.048 mm

    图  16   典型的流量时间曲线

    Figure  16.   Typical flow rate-time curve

    图  17   普通电机加压时井口和井底压力随时间的变化曲线

    Figure  17.   Variation curves of pressure over time at well head and bottom hole using a ordinary motor for pressure application

    图  18   陆地井和深水井井底压力随时间的变化曲线

    Figure  18.   Variation curves of bottom-hole pressure over time in onshore and deep-offshore wells

  • [1]

    BOTTO G, GIULIANI C, MAGGIONI B, et al. Innovative remote controlled completion for Aquila deepwater challenge[R]. SPE 36948, 1996.

    [2]

    SCHNITZLER E, FERREIRA GONÇALEZ L, SAVOLDI ROMAN R, et al. 100th intelligent completion installation: a milestone in Brazilian pre-salt development[R]. SPE 195935, 2019.

    [3]

    Anon. Halliburton website[Z]. [2022-01-15]. http://www.halliburton.com/en-US/ps/well-dynamics/well-completions/intelligent-completions/default.page?node-id=hfqel9vs&nav=en-US_completions_public.

    [4]

    POTIANI M, EDUARDO M. A review of IC installations: lessons learned from electric-hydraulic, hydraulic and all-electric sys-tems[R]. OTC 25391, 2014.

    [5]

    JOUBRAN J. Intelligent completions: design and reliability of interval control valves in the past, present, and future[R]. OTC 28917, 2018.

    [6]

    TYVONCHUK S P. Predicting of the geometrical behavior of formations in subsurface based on the analysis of LWD/MWD data while drilling horizontal wells[R]. SPE 208511, 2021.

    [7] 刘修善,苏义脑. 钻井液脉冲信号的传输特性分析[J]. 石油钻采工艺,2000,22(4):8–10. doi: 10.3969/j.issn.1000-7393.2000.04.003

    LIU Xiushan, SU Yinao. Investigation on the transmission behaviors of drilling fluid pulse signal[J]. Oil Drilling & Production Technology, 2000, 22(4): 8–10. doi: 10.3969/j.issn.1000-7393.2000.04.003

    [8]

    TRIKI A, CHAKER M A. Compound technique-based inline design strategy for water-hammer control in steel pressurized-piping systems[J]. International Journal of Pressure Vessels and Piping, 2019, 169: 188–203. doi: 10.1016/j.ijpvp.2018.12.001

    [9]

    ILAMAH O, WATERHOUSE R. Field-scale production optimization with intelligent wells[R]. SPE 190827, 2018.

    [10]

    MCSTRAVICK D M, ROTHERS D, BLUM G. Laboratory testing of reflected pressure pulses in small-diameter tubing[R]. OTC 7045, 1992.

    [11] CHAUDHRY M H. 实用水力瞬变过程[M]. 程永光, 杨建东, 赖旭, 等译. 3版. 北京: 中国水利水电出版社, 2015: 42−43.

    CHAUDHRY M H. Applied hydraulic transients[M]. CHENG Yongguang, YANG Jiandong, LAI Xu, et al, translated. 3rd ed. Beijing: China Water & Power Press, 2015: 42−43.

    [12] 雷天觉. 新编液压工程手册[M]. 北京: 北京理工大学出版社, 1998: 48.

    LEI Tianjue. New hydraulic engineering manual[M]. Beijing: Beijing Institute of Technology Press, 1998: 48.

    [13] 温诗铸, 黄平. 摩擦学原理[M]. 3版. 北京: 清华大学出版社, 2008: 8−10.

    WEN Shizhu, HUANG Ping. Principles of tribology[M]. 3rd ed. Beijing: Tsinghua University Press, 2008: 8−10.

    [14] 怀利, 斯特里特. 瞬变流[M]. 清华大学流体传动与控制教研室, 译. 北京: 水利电力出版社, 1983: 25−29.

    WYLIE E B, STREETER V L. Fluid transients[M]. Teaching and Research Group of Fluid Transmission and Control, Tsinghua University, translated. Beijing: Water Resources and Electric Power Press, 1983: 25−29.

    [15] 包日东. 管道瞬变流动分析[M]. 北京: 中国石化出版社, 2015: 39−45.

    BAO Ridong. Analysis of transient flow in pipeline[M]. Beijing: China Petrochemical Press, 2015: 39−45.

  • 期刊类型引用(2)

    1. 董良. 大庆油田高温深井试油测试技术研究. 石化技术. 2025(01): 164-166 . 百度学术
    2. 庞振力,杜卫刚,张宏胜,夏林,季鹏. 试油测试一体化工艺在GT1井的应用. 油气井测试. 2024(03): 32-37 . 百度学术

    其他类型引用(0)

图(18)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  120
  • PDF下载量:  60
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-02-16
  • 修回日期:  2022-08-22
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2022-12-07

目录

/

返回文章
返回