北黄海太阳盆地复杂深井小间隙尾管固井技术

胡晋军, 韩广海, 张海峰, 史为纪

胡晋军,韩广海,张海峰,等. 北黄海太阳盆地复杂深井小间隙尾管固井技术[J]. 石油钻探技术,2023, 51(1):40-44. DOI: 10.11911/syztjs.2022098
引用本文: 胡晋军,韩广海,张海峰,等. 北黄海太阳盆地复杂深井小间隙尾管固井技术[J]. 石油钻探技术,2023, 51(1):40-44. DOI: 10.11911/syztjs.2022098
HU Jinjun, HAN Guanghai, ZHANG Haifeng, et al. Liner cementing techniques with small annular space for complicated deep wells in the Sun Basin, North Yellow Sea [J]. Petroleum Drilling Techniques,2023, 51(1):40-44. DOI: 10.11911/syztjs.2022098
Citation: HU Jinjun, HAN Guanghai, ZHANG Haifeng, et al. Liner cementing techniques with small annular space for complicated deep wells in the Sun Basin, North Yellow Sea [J]. Petroleum Drilling Techniques,2023, 51(1):40-44. DOI: 10.11911/syztjs.2022098

北黄海太阳盆地复杂深井小间隙尾管固井技术

详细信息
    作者简介:

    胡晋军(1985—),男,山西交城人,2008年毕业于重庆科技学院石油工程专业,高级工程师,主要从事石油天然气固井方面的技术研究与管理工作。E-mail:hujj001@cnpc.com.cn

  • 中图分类号: TE256.3

Liner Cementing Techniques with Small Annular Space for Complicated Deep Wells in the Sun Basin, North Yellow Sea

  • 摘要:

    北黄海太阳盆地小间隙尾管固井时,砾石层漏失严重,煤层掉块造成环空憋堵,导致顶替效率低,固井质量差。为此,从固井工具和水泥浆着手,优化井眼准备措施,应用封隔式内嵌卡瓦尾管悬挂器增大环空过流面积,采用基体抗侵纤维防漏水泥浆降低漏失风险,研究形成了一套适合北黄海太阳盆地复杂深井的防憋堵、防漏失小间隙尾管固井技术。该固井技术在4 口井进行了现场应用,均取得了良好的应用效果,固井施工未发生憋堵和漏失,固井质量合格。研究结果表明,该技术可以有效解决北黄海太阳盆地尾管固井质量差的问题,有利于该区域油气资源的进一步勘探开发,具有一定的推广应用价值。

    Abstract:

    During the liner cementing with small annular space in the Sun Basin of the North Yellow Sea, lost circulation is severe in gravel layers, and chippings of coal seams cause annular blockage, resulting in low displacement efficiency and poor cementing quality. Considering these problems, this study selected suitable cementing tools and cementing slurry, optimized the wellbore preparation measures, and expanded the annular flow area using the slip-embedded liner hanger with packer. In addition, anti-leakage cement slurry with matrix invasion-resistant fiber was adopted to reduce the risk of lost circulation. In this way, a set of cementing techniques with small annular space were formed for complicated deep wells in the Sun Basin to prevent blockage and lost circulation. These techniques were applied to 4 wells on site, and the results revealed that no blockage and lost circulation occurred during liner cementing. As a result, the cementing quality met standards. Field applications indicated that the developed techniques could effectively solve the problem of poor liner cementing quality in the Sun Basin, suggesting that they could be further promoted and applied. Overall, these techniques are conducive to the further exploration and development of oil and gas resources in this area.

  • 北黄海太阳盆地是位于中国黄海海域北部的一个以中、新生代为主的沉积盆地,自下而上发育中上侏罗统、下白垩统、渐新统和新近系,油气资源勘探处于初期[1-3]。该区域部署的井均为预探井,完钻井深在4 000 m左右,采用尾管固井方式完井,前期已完成6口井,钻进过程中频繁发生漏失且有大量煤层掉块,采用常规性能的尾管悬挂器和水泥浆固井,固井过程中环空憋堵严重,均有漏失发生,固井质量不合格,需要进一步优化配套的尾管固井技术。

    针对北黄海太阳盆地尾管固井的技术难点,优化前期钻井液堵漏和通井洗井措施以提高地层承压能力并保障井眼清洁,将尾管悬挂器卡瓦由外置改为内嵌,增大“喇叭口”处过流面积,并在尾管悬挂器顶部安装封隔器隔离裸眼环空,在水泥浆中加入基体抗侵降滤失剂和纤维材料增强浆体内聚力和触变性,形成了适用与该区域的复杂深井小间隙尾管固井技术。现场应用未发生憋堵和漏失,固井质量合格,应用效果良好。

    北黄海太阳盆地的预探井采用五开井身结构,四开采用ϕ311.1 mm钻头钻至井深2 500 m左右,下入ϕ244.5 mm套管,五开采用ϕ215.9 mm钻头钻至井深4 000 m左右,下入ϕ177.8 mm尾管固井,封固中上侏罗统。五开尾管固井技术难点如下:

    1)尾管固井时砾石层漏失和煤层掉块造成环空憋堵。上侏罗统以黑色泥岩、杂色粉砂质泥岩为主,局部夹砾石层;中侏罗统以灰色泥岩、灰白色砂岩为主,局部夹煤层。五开钻进过程中,砾石层漏失严重,最大漏失速度达27 L/h,煤层掉块严重,掉块尺寸最大达70 mm×20 mm×15 mm,前期已经完钻的6口井,均在尾管固井过程中发生环空憋堵和井下漏失。

    2)小间隙尾管固井加剧了环空憋堵和井下漏失。ϕ215.9 mm井眼下入ϕ177.8 mm尾管,属于小间隙尾管固井,“喇叭口”处单边间隙5 mm左右,固井前循环与固井过程中煤层掉块在小间隙上、下堆积,使环空憋堵和井下漏失加剧[4-6]

    3)固井施工排量受限,顶替效率低。受环空憋堵和井下漏失影响,固井施工排量难以提高,前期固井最大顶替排量13~15 L/s,裸眼段环空返速0.65~0.76 m/s,顶替效率较低,固井质量均不合格。

    上侏罗统砾石层粒间微裂缝是井下漏失的主要原因,固井前在钻井液中加入纤维堵漏材料,通过先静止后循环的堵漏方式提高地层承压能力。对于引起环空憋堵的煤层掉块,固井前采用大于尾管串刚度的钻具组合通井,并结合实测井径在缩径和遇阻井段进行短起下,采用高黏钻井液充分循环,通井到底,大排量循环洗井2个循环周期以上,起钻前调整钻井液的防塌和护壁性能[7-10]

    在进行尾管固井时,尾管悬挂器处的环空过流面积最小,为了降低五开尾管固井时的环空憋堵风险,选择尾管悬挂器时,将有效环空过流面积作为重要指标。尾管悬挂器从上到下主要由防砂罩、回接筒、扶正块、卡瓦和液缸组成。回接筒的外径大且长度一般在3 m左右,占尾管悬挂器长度的一半,此处环空过流面积最小,因此,回接筒的外径越小越好。尾管悬挂器坐挂后卡瓦处的过流面积变小,使环空憋堵风险增大,因此,坐挂后卡瓦处的过流面积越大越好,且坐挂前后过流面积变化率越低越好。如图1所示,将卡瓦内嵌入尾管悬挂器本体,为缩小回接筒外径创造了条件,利用卡瓦侧面承载,坐挂后卡瓦被锥套托起,与尾管悬挂器芯体形成内过流通道,显著增大了卡瓦处的过流面积[11-17]。回接筒外径由210 mm缩至206 mm,过流面积由35 cm2增至45 cm2,增大了28.57%。坐挂后卡瓦处的环空过流面积由31 cm2增至45 cm2,增大了45.16%,坐挂前后卡瓦处的环空过流面积由49 cm2变为45 cm2,变化率仅8.16 %。

    图  1  尾管悬挂器卡瓦结构对比
    Figure  1.  Structure comparison of slips for liner hanger

    图2所示,压缩扩张式封隔器通过压胀胶筒密封环空,将其安装在尾管悬挂器顶部,尾管固井碰压后,通过胀封挡块和回接筒将下压载荷传递至封隔器胶筒,使其受挤压变形,分隔密封尾管悬挂器与套管环空,隔离尾管悬挂器上部环空液柱压力,实现下部环空相对密闭真空,有效降低尾管固井取出中心管后循环出多余水泥浆期间和候凝期间的漏失风险[18-19]

    图  2  尾管悬挂器封隔器
    Figure  2.  Packer of liner hanger

    为降低五开尾管固井时井下漏失的风险,提高水泥浆的防漏堵漏性能,在水泥浆中加入基体抗侵降滤失剂BCG-200L和纤维防漏剂BCE-220S。BCG-200L对水泥浆具有较好的增黏和提切作用,使浆体有较强的内聚力和一定的触变性,可有效增加水泥浆向地层渗流的阻力[20-21];BCE-220S中的纤维材料表面经亲水处理,纤维束在水泥浆中不结团,能够形成均匀的网状结构,对渗透性地层和微裂缝发育的地层有较好的堵漏效果[22-23]。基体抗侵纤维防漏水泥浆的配方为胜潍G级加砂水泥+5.0%基体抗侵降滤失剂BCG-200L+2.5 %纤维防漏剂BCE-220S+0.1 %消泡剂G603+0.5 %缓凝剂BXR-200L+0.5 %减阻剂BCD-210L+44.0%淡水。

    测试基体抗侵纤维防漏水泥浆在70~130 ℃下的流变参数评价其内聚力和触变性,结果见表1。由表1可知,在测试温度下,基体抗侵纤维防漏水泥浆有较高的塑性黏度、动切力和静切力差,塑性黏度为120~150 mPa·s,动切力为20.1~26.6 Pa,静切力差为21.4~24.1 Pa,说明BCG-200L有较好的增黏和提切作用,水泥浆内聚力较强、触变性较好。

    表  1  基体抗侵纤维防漏水泥浆的流变性能
    Table  1.  Rheological properties of anti-leakage cement slurry with matrix invasion-resistant fiber
    温度/℃塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/
    Pa
    静切力差/
    Pa
    7015026.67.1/31.224.1
    9014424.36.3/29.222.9
    11012321.55.5/27.221.7
    13012020.15.1/26.521.4
    下载: 导出CSV 
    | 显示表格

    利用堵漏测试仪测试不同尺寸缝隙孔板的水泥浆漏失量,评价其堵漏性能。堵漏测试仪在降滤失仪基础上改造而成,其结构如图3所示。采用不同尺寸的孔缝孔板(见图4)和不同尺寸的裂缝孔板(见图5),对进气口持续施加定量压力,推动活塞向下运动,挤压水泥浆通过孔板,测量30 min内的漏失量,漏失量越少说明水泥浆堵漏能力越强。如表2所示,对孔缝直径为0.5~3.0 mm的孔板施加7.0 MPa的压力,基体抗侵纤维水泥浆的漏失量为10~41 mL,均小于50 mL。对裂缝直径为0.5~3.0 mm的孔板施加3.5 MPa的压力,基体抗侵纤维水泥浆的漏失量为14~49 mL,也均小于50 mL。而未加纤维的水泥浆全部漏失,说明基体抗侵纤维水泥浆的堵漏性能较好。

    图  3  堵漏测试仪的结构
    Figure  3.  Structure of plugging tester
    图  4  孔缝孔板
    Figure  4.  Structure of plate with aperture
    图  5  裂缝孔板
    Figure  5.  Structure of plate with fracture
    表  2  基体抗侵纤维防漏水泥浆的堵漏性能
    Table  2.  Performance of anti-leakage cement slurry with matrix invasion-resistant fiber
    缝隙类型尺寸/mm堵漏压力/MPa漏失量/mL
    孔缝0.57.010
    1.07.011
    2.07.027
    3.07.041
    裂缝0.53.514
    1.03.519
    2.03.535
    3.03.549
    下载: 导出CSV 
    | 显示表格

    北黄海太阳盆地的4口井应用了复杂深井小间隙尾管固井技术,均取得了良好的应用效果,固井施工未发生憋堵和漏失,固井质量合格。下面以S21-2井为例介绍现场应用情况和效果。S21-2井是部署在北黄海太阳盆地的一口预探井,四开ϕ244.5 mm套管下至井深2 606 m,五开使用密度1.20 kg/L的有机盐钻井液,采用ϕ215.9 mm钻头钻至井深3 640 m,钻进过程中频繁发生渗漏和憋堵,2 939~2 974 m井段的砾石层发生了漏失,最大漏失速度为13 L/h,累计漏失钻井液90 L,3 177~3 199 m井段返出大量煤层掉块,掉块尺寸最大达45 mm×15 mm×10 mm。

    在完钻后通井循环过程中,注入25 L含有纤维堵漏材料的钻井液,静止堵漏12 h。固井前采用双稳通井钻具组合通井,配合2个高黏钻井液段塞,循环2个周期。下入ϕ177.8 mm尾管(尾管串组合:ϕ177.8 mm浮鞋+ϕ177.8 mm套管×1根+ϕ177.8 mm浮箍+ϕ177.8 mm浮箍×1根+ϕ177.8 mm球座+ϕ177.8 mm尾管串+ϕ244.5 mm×ϕ177.8 mm封隔式内嵌卡瓦尾管悬挂器+ϕ127.0 mm钻杆串),尾管封固井段2 566~3 640 m。下入尾管后以10 L/s的排量将井眼中25 L的高黏钻井液循环出井,然后将排量提至22 L/s循环2个周期,尾管坐挂后将排量提至22 L/s继续循环1个周期,循环过程正常。固井施工注入密度1.25 kg/L的纤维防漏隔离液7 L、密度1.90 kg/L的基体抗侵纤维防漏水泥浆25.8 L,注入排量10~15 L/s。释放钻杆胶塞后以22 L/s的排量进行顶替,当水泥浆被顶替出尾管鞋后,逐渐将顶替排量降至10 L/s,碰压正常,中心管上提2 m,下放钻具给封隔器施加150 kN压力,封隔器正常坐封,拔出中心管,循环出多余水泥浆,固井施工结束。固井过程中无漏失或憋堵发生,固井质量良好。

    1)北黄海太阳盆地尾管固井质量差的主要原因为砾石层粒间微裂缝漏失、煤层掉块憋堵环空和尾管固井时的环空间隙小等。

    2)固井前循环纤维堵漏钻井液和高黏钻井液可以提高地层承压能力并充分清洁井眼,封隔式内嵌尾管悬挂器能大幅增大“喇叭口”环空过流面积,基体抗侵纤维防漏水泥浆的防漏、堵漏性能较好,这3项技术措施有利于解决太阳盆地尾管固井的技术难点。

    3)现场应用结果表明,复杂深井小间隙尾管固井技术可有效提高北黄海太阳盆地复杂深井的固井质量,有较好的区域适用性,可以为类似复杂井的固井施工提供参考。

  • 图  1   尾管悬挂器卡瓦结构对比

    Figure  1.   Structure comparison of slips for liner hanger

    图  2   尾管悬挂器封隔器

    Figure  2.   Packer of liner hanger

    图  3   堵漏测试仪的结构

    Figure  3.   Structure of plugging tester

    图  4   孔缝孔板

    Figure  4.   Structure of plate with aperture

    图  5   裂缝孔板

    Figure  5.   Structure of plate with fracture

    表  1   基体抗侵纤维防漏水泥浆的流变性能

    Table  1   Rheological properties of anti-leakage cement slurry with matrix invasion-resistant fiber

    温度/℃塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/
    Pa
    静切力差/
    Pa
    7015026.67.1/31.224.1
    9014424.36.3/29.222.9
    11012321.55.5/27.221.7
    13012020.15.1/26.521.4
    下载: 导出CSV

    表  2   基体抗侵纤维防漏水泥浆的堵漏性能

    Table  2   Performance of anti-leakage cement slurry with matrix invasion-resistant fiber

    缝隙类型尺寸/mm堵漏压力/MPa漏失量/mL
    孔缝0.57.010
    1.07.011
    2.07.027
    3.07.041
    裂缝0.53.514
    1.03.519
    2.03.535
    3.03.549
    下载: 导出CSV
  • [1] 刘金萍,王改云,简晓玲,等. 北黄海东部次盆地层序地层格架中烃源岩发育特征与影响因素[J]. 吉林大学学报(地球科学版),2020,50(1):1–17.

    LIU Jinping, WANG Gaiyun, JIAN Xiaoling, et al. Development and influencing factors of source rock in sequential stratigraphic framework in the eastern sub-basin, North Yellow Sea[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 1–17.

    [2] 简晓玲,刘金萍,王改云. 北黄海东部次盆地中新生代原型盆地分析[J]. 中国海上油气,2019,31(1):22–31.

    JIAN Xiaoling, LIU Jinping, WANG Gaiyun. Analysis of Meso-Cenozoic prototype basins in the east sub-basin, northern Yellow Sea[J]. China Offshore Oil and Gas, 2019, 31(1): 22–31.

    [3] 何将启,梁世友,赵永强,等. 北黄海盆地地质构造特征及其在油气勘探中的意义[J]. 海洋地质与第四纪地质,2007,27(2):101–105.

    HE Jiangqi, LIANG Shiyou, ZHAO Yongqiang, et al. Characteristics of geologic structures of the North Yellow Sea Basin: implications for petroleum explorations[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 101–105.

    [4] 吴朗,聂世均,曾凡坤,等. 深井小间隙尾管固井作业风险评价方法[J]. 中国海上油气,2015,27(1):91–95.

    WU Lang, NIE Shijun, ZENG Fankun, et al. Risk evaluation method of small clearance liner cementing in deep wells[J]. China Offshore Oil and Gas, 2015, 27(1): 91–95.

    [5] 张峰,刘子帅,李宁,等. 塔里木库车山前深井窄间隙小尾管固井技术[J]. 钻井液与完井液,2019,36(4):473–479. doi: 10.3969/j.issn.1001-5620.2019.04.014

    ZHANG Feng, LIU Zishuai, LI Ning, et al. Cementing small liner strings with narrow clearance in deep wells in the Kuche piedmont structure in Tarim Basin[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 473–479. doi: 10.3969/j.issn.1001-5620.2019.04.014

    [6] 房恩楼, 王晓亮, 张利利, 等. 渤中19-6尾管固井质量提升措施[J]. 石油钻采工艺, 2018, 40(增刊1): 146−149.

    FANG Enlou, WANG Xiaoliang, ZHANG Lili, et al. Technologies to improve the quality of liner cementing in BZ19-6 Block[J]. Oil Drilling & Production Technology, 2018, 40(supplemnet 1): 146−149.

    [7] 高飞,田宝振,费中明,等. 磴探1井疏松砂岩油层ϕ139.7 mm尾管固井技术[J]. 石油钻采工艺,2021,43(6):727–731.

    GAO Fei, TIAN Baozhen, FEI Zhongming, et al. ϕ139.7 mm liner cementing technology in the unconsolidated sandstone oil layers of Well Dengtan 1[J]. Oil Drilling & Production Technology, 2021, 43(6): 727–731.

    [8] 邓昌松,何思龙,段永贤,等. 复杂超深井KS1井四开尾管固井技术[J]. 石油钻采工艺,2019,41(6):708–713. doi: 10.13639/j.odpt.2019.06.005

    DENG Changsong, HE Silong, DUAN Yongxian, et al. Fourth-section liner cementing technology used in the complex ultradeep Well KS1[J]. Oil Drilling & Production Technology, 2019, 41(6): 708–713. doi: 10.13639/j.odpt.2019.06.005

    [9] 杨红歧,陈会年,邓天安,等. 元坝气田超深探井小尾管防气窜固井技术[J]. 石油钻采工艺,2020,42(5):592–599.

    YANG Hongqi, CHEN Huinian, DENG Tian’an, et al. The anti-gas channeling small-liner cementing technology for ultra deep exploration wells of Yuanba Gasfield[J]. Oil Drilling & Production Technology, 2020, 42(5): 592–599.

    [10] 张瑞,侯跃全,郭朝辉,等. 川西长裸眼水平井下尾管循环解阻关键技术[J]. 石油钻探技术,2020,48(3):52–57. doi: 10.11911/syztjs.2020040

    ZHANG Rui, HOU Yuequan, GUO Zhaohui, et al. Key techniques for eliminating resistance while running liner with circulation in long horizontal openhole wells in the western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 52–57. doi: 10.11911/syztjs.2020040

    [11] 张冠林,徐星,赵聪,等. 国内外高温高压尾管悬挂器技术新进展[J]. 断块油气田,2020,27(1):113–116.

    ZHANG Guanlin, XU Xing, ZHAO Cong, et al. New development of high temperature and high pressure liner hanger technology in China and abroad[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 113–116.

    [12] 马开华,谷磊,叶海超. 深层油气勘探开发需求与尾管悬挂器技术进步[J]. 石油钻探技术,2019,47(3):34–40. doi: 10.11911/syztjs.2019055

    MA Kaihua, GU Lei, YE Haichao. The demands on deep oil/gas exploration & development and the technical advancement of liner hangers[J]. Petroleum Drilling Techniques, 2019, 47(3): 34–40. doi: 10.11911/syztjs.2019055

    [13] 阮臣良,马兰荣,姜向东,等. 内嵌卡瓦尾管悬挂器的优势与现场应用分析[J]. 钻采工艺,2013,36(2):84–86. doi: 10.3969/J.ISSN.1006-768X.2013.02.24

    RUAN Chenliang, MA Lanrong, JIANG Xiangdong, et al. Advantages and application of inner-slip liner hanger[J]. Drilling & Production Technology, 2013, 36(2): 84–86. doi: 10.3969/J.ISSN.1006-768X.2013.02.24

    [14] 朱晓丽,张金法,魏书雷. 尾管用内嵌式卡瓦坐挂机构承载能力分析[J]. 石油矿场机械,2018,47(5):84–87. doi: 10.3969/j.issn.1001-3482.2018.05.018

    ZHU Xiaoli, ZHANG Jinfa, WEI Shulei. Analysis of carrying capacity of embedded slips for tail pipe[J]. Oil Field Equipment, 2018, 47(5): 84–87. doi: 10.3969/j.issn.1001-3482.2018.05.018

    [15] 高果成. 内嵌卡瓦尾管悬挂器在老井侧钻中的优势综合分析[J]. 钻采工艺,2020,43(1):77–80. doi: 10.3969/J.ISSN.1006-768X.2020.01.22

    GAO Guocheng. Comprehensive analysis on the advantages of applying inner embedded slips liner hanger in the sidetracking wells[J]. Drilling & Production Technology, 2020, 43(1): 77–80. doi: 10.3969/J.ISSN.1006-768X.2020.01.22

    [16] 肖勇,李丹阳,牛阁,等. 新型尾管悬挂器在塔里木油田的适应性研究应用[J]. 钻采工艺,2018,41(2):30–32. doi: 10.3969/J.ISSN.1006-768X.2018.02.09

    XIAO Yong, LI Danyang, NIU Ge, et al. Study on applicability of new style liner hanger at Tarim Oilfield[J]. Drilling & Production Technology, 2018, 41(2): 30–32. doi: 10.3969/J.ISSN.1006-768X.2018.02.09

    [17] 郭朝辉,李振,罗恒荣. ϕ273.1 mm无限极循环尾管悬挂器在元坝气田的应用研究[J]. 石油钻探技术,2021,49(5):64–69. doi: 10.11911/syztjs.2021004

    GUO Zhaohui, LI Zhen, LUO Hengrong. Research and application of a ϕ273.1 mm infinite circulation liner hanger in Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(5): 64–69. doi: 10.11911/syztjs.2021004

    [18] 路飞飞,于洋,王伟志,等. 顺北油气田防漏固井用封隔式分级箍研制与应用[J]. 石油钻探技术,2022,50(4):31–36. doi: 10.11911/syztjs.2022076

    LU Feifei, YU Yang, WANG Weizhi, et al. Development and application of a leakproof stage cementing collar with packer in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 31–36. doi: 10.11911/syztjs.2022076

    [19] 刘国祥,郭朝辉,孙文俊,等. 新型封隔式尾管悬挂器的研制及应用[J]. 石油钻采工艺,2014,36(5):120–123. doi: 10.13639/j.odpt.2014.05.030

    LIU Guoxiang, GUO Zhaohui, SUN Wenjun, et al. Development and application of new isolated liner hanger[J]. Oil Drilling & Production Technology, 2014, 36(5): 120–123. doi: 10.13639/j.odpt.2014.05.030

    [20] 胡晋军,张立丽,张耀,等. 埕海油田大斜度井超短尾管固井技术[J]. 石油钻探技术,2021,49(3):81–86. doi: 10.11911/syztjs.2020132

    HU Jinjun, ZHANG Lili, ZHANG Yao, et al. Ultra-short liner cementing technology for highly deviated wells in the Chenghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(3): 81–86. doi: 10.11911/syztjs.2020132

    [21] 李宗要,张海涛,魏群宝,等. 青海油田英西深层水平井固井技术[J]. 钻井液与完井液,2019,36(5):622–628. doi: 10.3969/j.issn.1001-5620.2019.05.017

    LI Zongyao, ZHANG Haitao, WEI Qunbao, et al. Technology for cementing deep reservoirs in Yingxi Area, Qinghai Oilfield[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 622–628. doi: 10.3969/j.issn.1001-5620.2019.05.017

    [22] 邹双,冯明慧,张天意,等. 多尺度纤维韧性水泥浆体系研究与应用[J]. 石油钻探技术,2020,48(6):40–46. doi: 10.11911/syztjs.2020084

    ZOU Shuang, FENG Minghui, ZHANG Tianyi, et al. Research and application of tough cement slurry systems with multi-scale fiber[J]. Petroleum Drilling Techniques, 2020, 48(6): 40–46. doi: 10.11911/syztjs.2020084

    [23] 李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液,2021,38(5):623–627.

    LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 623–627.

  • 期刊类型引用(1)

    1. 何雨,孟鐾桥,郑友志,吴柄燕,赵军,李斌. 渝西区块页岩气钻井防漏堵漏技术研究. 石油工业技术监督. 2023(07): 58-62 . 百度学术

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  141
  • PDF下载量:  79
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2022-11-28
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-01-31

目录

/

返回文章
返回