海上油田电控智能控水采油工具研制及性能评价

杨树坤, 郭宏峰, 郝涛, 赵广渊, 杜晓霞, 李翔

杨树坤,郭宏峰,郝涛,等. 海上油田电控智能控水采油工具研制及性能评价[J]. 石油钻探技术,2022, 50(5):76-81. DOI: 10.11911/syztjs.2022086
引用本文: 杨树坤,郭宏峰,郝涛,等. 海上油田电控智能控水采油工具研制及性能评价[J]. 石油钻探技术,2022, 50(5):76-81. DOI: 10.11911/syztjs.2022086
YANG Shukun, GUO Hongfeng, HAO Tao, et al. Development and performance evaluation of an electrically controlled intelligent water control and oil recovery tool for offshore oilfields [J]. Petroleum Drilling Techniques,2022, 50(5):76-81. DOI: 10.11911/syztjs.2022086
Citation: YANG Shukun, GUO Hongfeng, HAO Tao, et al. Development and performance evaluation of an electrically controlled intelligent water control and oil recovery tool for offshore oilfields [J]. Petroleum Drilling Techniques,2022, 50(5):76-81. DOI: 10.11911/syztjs.2022086

海上油田电控智能控水采油工具研制及性能评价

基金项目: 国家科技重大专项“渤海油田高效开发示范工程”(编号:2016ZX05058)及中海油服科技攻关项目“有缆电控智能分层采油技术研究”(编号:YSB19YF020)部分研究内容
详细信息
    作者简介:

    杨树坤(1986—),男,山东寿光人,2010年毕业于山东科技大学采矿工程专业,2013年获中国石油大学(华东)油气田开发工程专业硕士学位,高级工程师,主要从事分层注采、智能完井工程方面的研究。E-mail:yangshukun2000@126.com

  • 中图分类号: TE355

Development and Performance Evaluation of an Electrically Controlled Intelligent Water Control and Oil Recovery Tool for Offshore Oilfields

  • 摘要:

    为了解决渤海油田高含水阶段生产井分层控水采油难题,提高生产井的稳油开发效果,研制了电控智能控水采油工具。工具采用单芯电缆实现井下供电和通讯,设计采用多测试通道并列结构,配备流量、含水率、温度和压力实时测试功能;采用超声波时差法测量单层产液量,采用射频法测量单层产液含水率,能够根据各层含水情况进行实时控制,实现生产井生产时的控水稳油。工具性能试验结果表明,电控智能控水采油工具在60 MPa压力下密封性能可靠,120 ℃温度下工作正常,含水率测量范围0~100%,在流量高时流量测量精度高,满足海上油田现场应用要求。电控智能控水采油工具为海上生产井实现分层采油、高效稳产开发提供了新的控水工具,也为下一步海上油田现场应用奠定了技术基础。

    Abstract:

    An intelligent water control and oil recovery tool with electrical control was developed to tackle the separate-layer water control and oil recovery difficulties of production wells in the high water cut stage of Bohai Oilfield and to improve the effect of oil production stabilization in the development of production wells. In designing the tool, a single-core cable was employed to ensure the power supply and communications, and multiple test channels in parallel were adopted to achieve real-time testing of the flow rate, water cut, temperature, and pressure. In addition, the ultrasonic time difference method was used to test the fluid production from a single layer, and the radio frequency method was applied to test the water cut in the fluid production of a single layer. With this tool, a real-time control could be achieved according to the water cut of each layer, and the water control and oil production stabilization could be achieved in the development of production wells. The performance tests of this tool demonstrated that the seal performance was reliable under 60 MPa, and it could operate normally at 120 ℃. The test range of water cut was from 0 to 100%, and the measuring accuracy was high for high flow rate, which satisfied the requirements of offshore oilfield applications. The developed tool provides a new water control tool for separate-layer oil production and the efficient and stable development of offshore production wells, and lays a foundation for its subsequent field application in offshore oilfields.

  • 图  1   电控智能控水采油技术原理

    Figure  1.   Principle of the electrically controlled intelligent water control and oil recovery technology

    图  2   电控智能控水采油工具结构

    Figure  2.   Structure of the electrically controlled intelligent water control and oil recovery tool

    图  3   电控智能控水采油工具D-D剖面结构

    Figure  3.   D-D profile structure of the electrically controlled intelligent water control and oil recovery tool

    图  4   电缆穿越机构

    Figure  4.   Cable crossing structure

    图  5   流量控制机构

    1.氧化锆涂层;2.调节阀;3.连接套;4.固定块;5.限位开关;6.丝杠;7.连轴套;8.电机固定座;9.高温电机

    Figure  5.   Flow rate control mechanism

    图  6   含水率测量机构

    Figure  6.   Water cut test mechanism

    图  7   流量测量机构

    1.压紧座;2.流量传感器;3.测量通道

    Figure  7.   Flow rate test mechanism

    图  8   试验温度、压力随时间的变化曲线

    Figure  8.   Variation curves of temperature and pressure with time in the test environment

    图  9   流量、含水率测量试验装置

    Figure  9.   Test device for flow rate and water cut testing

    表  1   流量测量结果

    Table  1   Test results of flow rate

    设定流量/
    (m3·d−1
    不同含水率混合液的测量流量/(m3·d−1
    含水率20%含水率90%
    10 4.20 6.80
    30 38.91 21.30
    50 59.60 38.51
    70 60.46 79.09
    90 101.49 100.98
    120 129.69 128.67
    150 139.80 142.59
    180 191.40 189.42
    210 200.01 219.09
    240 250.86 245.43
    270 261.24 277.92
    300 294.30 309.84
    下载: 导出CSV

    表  2   含水率测量结果

    Table  2   Test results of water cut

    设定含水率,%测量含水率,%绝对误差/百分点
    2026.336.33
    4045.605.60
    5044.095.91
    6066.126.12
    7076.906.90
    8073.866.14
    8590.005.00
    9092.442.44
    9599.104.10
    下载: 导出CSV
  • [1] 刘合,郑立臣,杨清海,等. 分层采油技术的发展历程和展望[J]. 石油勘探与开发,2020,47(5):1027–1038. doi: 10.11698/PED.2020.05.17

    LIU He, ZHENG Lichen, YANG Qinghai, et al. Development and prospect of separated zone oil production technology[J]. Petroleum Exploration and Development, 2020, 47(5): 1027–1038. doi: 10.11698/PED.2020.05.17

    [2] 何海峰. 胜利海上疏松砂岩油藏分层防砂分层采油技术[J]. 石油钻探技术,2021,49(6):99–104. doi: 10.11911/syztjs.2021027

    HE Haifeng. Separate layer sand control and oil production technology in offshore unconsolidated sandstone reservoirs of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(6): 99–104. doi: 10.11911/syztjs.2021027

    [3] 许建国,杨清海,伊鹏,等. 采油井模块化分层流体取样与压力测试技术[J]. 石油勘探与开发,2022,49(2):385–393. doi: 10.11698/PED.2022.02.17

    XU Jianguo, YANG Qinghai, YIN Peng, et al. Modular zonal fluid sampling and pressure testing technology for production well[J]. Petroleum Exploration and Development, 2022, 49(2): 385–393. doi: 10.11698/PED.2022.02.17

    [4] 李小永,李经纬,付亚荣,等. 油水井智能堵水调剖技术现状及发展趋势[J]. 石油钻采工艺,2021,43(4):545–551. doi: 10.13639/j.odpt.2021.04.020

    LI Xiaoyong, LI Jingwei, FU Yarong, et al. Current situation and development trend of intelligent water plugging and profile control technology for oil and water wells[J]. Oil Drilling & Production Technology, 2021, 43(4): 545–551. doi: 10.13639/j.odpt.2021.04.020

    [5] 贾鹿,石国伟,石峰,等. 注采连通关系计算方法的改进及在配注中的应用[J]. 特种油气藏,2020,27(4):85–91. doi: 10.3969/j.issn.1006-6535.2020.04.013

    JIA Lu, SHI Guowei, SHI Feng, et al. Improvement of injection-production connectivity calculation and its application in injection allocation[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 85–91. doi: 10.3969/j.issn.1006-6535.2020.04.013

    [6] 张洪宝. 智能分层找油找水技术在海外河油田的试验研究[J]. 化学工程与装备,2013(11):101–103.

    ZHANG Hongbao. Experimental study on intelligent layered oil and water exploration technology in overseas river oilfield[J]. Chemical Engineering & Equipment, 2013(11): 101–103.

    [7] 宋辉辉,任从坤,任兆林,等. 海上油田分层防砂分层注水高效集成技术[J]. 石油钻采工艺,2021,43(3):384–388. doi: 10.13639/j.odpt.2021.03.017

    SONG Huihui, REN Congkun, REN Zhaolin, et al. An efficient integration technology of separate-layer sand control and separate-layer water injection for offshore oilfields[J]. Oil Drilling & Production Technology, 2021, 43(3): 384–388. doi: 10.13639/j.odpt.2021.03.017

    [8] 何祖清,梁承春,彭汉修,等. 鄂尔多斯盆地南部致密油藏水平井智能分采技术研究与试验[J]. 石油钻探技术,2017,45(3):88–94.

    HE Zuqing, LIANG Chengchun, PENG Hanxiu, et al. Research and tests on horizontal well smart layering exploiting technology in tight oil reservoirs in southern Ordos Basin[J]. Petroleum Drilling Techniques, 2017, 45(3): 88–94.

    [9] 刘香山, 宋辉辉, 张福涛, 等. 海上油田智能注采工艺技术研究与应用[J]. 石油工程建设, 2020, 46(增刊1): 237 − 241.

    LIU Xiangshan, SONG Huihui, ZHANG Futao, et al. Research and application of intelligent injection and production technology in offshore oilfields[J]. Petroleum Engineering Construction, 2020, 46(supplement 1): 237 − 241.

    [10] 李光前. 电控机械找堵水工艺技术研究[J]. 石油矿场机械,2010,39(5):43–45. doi: 10.3969/j.issn.1001-3482.2010.05.013

    LI Guangqian. Study of electrical-mechanical water detection and shut off technique[J]. Oil Field Equipment, 2010, 39(5): 43–45. doi: 10.3969/j.issn.1001-3482.2010.05.013

    [11] 刘伟,徐德奎,姜春雷. 智能电控存储式油井分层测压仪研制[J]. 化工自动化及仪表,2011,38(5):540–542. doi: 10.3969/j.issn.1000-3932.2011.05.009

    LIU Wei, XU Dekui, JIANG Chunlei. Stratified pressure instrument development for intelligent electronic-controlled oilwell[J]. Control and Instruments in Chemical Industry, 2011, 38(5): 540–542. doi: 10.3969/j.issn.1000-3932.2011.05.009

    [12] 姜燕,罗洪林,张旭,等. 管外缆控式智能分注技术[J]. 石油钻采工艺,2021,43(6):803–810. doi: 10.13639/j.odpt.2021.06.018

    JIANG Yan, LUO Honglin, ZHANG Xu, et al. External cable-controlled intelligent separate-layer water injection technology[J]. Oil Drilling & Production Technology, 2021, 43(6): 803–810. doi: 10.13639/j.odpt.2021.06.018

    [13] 王新志,马宏伟,沈威,等. 智能无线分层测压找水卡堵水工艺及工具设计[J]. 石油矿场机械,2018,47(5):38–42. doi: 10.3969/j.issn.1001-3482.2018.05.008

    WANG Xinzhi, MA Hongwei, SHEN Wei, et al. Layered wireless pressure measurement of water detection and plugging technology[J]. Oil Field Equipment, 2018, 47(5): 38–42. doi: 10.3969/j.issn.1001-3482.2018.05.008

    [14] 李洲,马宏伟,张朋,等. 井下智能注采工艺技术在河南油田的应用[J]. 石油地质与工程,2017,31(1):121–123. doi: 10.3969/j.issn.1673-8217.2017.01.029

    LI Zhou, MA Hongwei, ZHANG Peng, et al. Application of downhole intelligent injection-production technology in Henan Oilfield[J]. Petroleum Geology and Engineering, 2017, 31(1): 121–123. doi: 10.3969/j.issn.1673-8217.2017.01.029

    [15] 贾庆升. 无线智能分层注采技术研究[J]. 石油机械,2019,47(7):99–104. doi: 10.16082/j.cnki.issn.1001-4578.2019.07.015

    JIA Qingsheng. Intelligent separate layer injection and production technology based on wireless telemetry[J]. China Petroleum Machinery, 2019, 47(7): 99–104. doi: 10.16082/j.cnki.issn.1001-4578.2019.07.015

    [16] 伍朝东,李胜,汪团元,等. 井下智能找堵水分层采油技术[J]. 石油天然气学报,2008,30(3):376–378.

    WU Chaodong, LI Sheng, WANG Tuanyuan, et al. Techniques for oil production by intelligent downhole water searching, plugging and stratification[J]. Journal of Oil and Gas Technology, 2008, 30(3): 376–378.

  • 期刊类型引用(2)

    1. 沈如芳,马卫国,陈婷. 基于ABAQUS的复合桥塞钻削仿真及其性能分析. 石油机械. 2020(02): 42-47+79 . 百度学术
    2. 胡琴,李志强,任航. 模糊正交法在弧形盘式齿破岩性能评价中的应用. 断块油气田. 2019(03): 389-393 . 百度学术

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  131
  • PDF下载量:  57
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-06-21
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回