Productivity Model and Seepage Rules for the Broadband Fracturing of Ultra-Low Permeability Reservoirs in Changqing Oilfield
-
摘要:
长庆油田超低渗透油藏具有储层致密、物性差和非均质性强等特征,采用宽带压裂技术提高了开发效果,实现了增油降水的目的,但目前仍缺乏理论产能模型,存在对水驱机理认识不清的问题。为了准确评价长庆油田宽带压裂改造的增产作用,进一步揭示油水渗流规律,基于油水两相流体的流动形态,将注水井的渗流物理场划分为主裂缝内线性流、宽带区椭圆流和基质区圆形径向流等3个区域;根据等值渗流阻力法,建立了菱形反九点井网宽带压裂非达西渗流的产能模型;以实际井组为例,采用数值计算方法,计算分析了宽带区的带宽及等效渗透率对井网产能的影响,探究了日产液量的变化规律。研究结果表明,宽带压裂技术可显著提高井网的日产油量、采出程度和日产液量,可扩大侧向波及体积,改善水驱的均匀性,提高井网的产能。该研究成果为油田现场优化宽带压裂技术应用提供了理论支持。
Abstract:The ultra-low permeability reservoirs in Changqing Oilfield are characterized by tight structure, poor physical properties, and high heterogeneity. The broadband fracturing technology adopted has promoted the development effectiveness and fulfilled the objective of increasing oil production and reducing water cut. However, current studies rarely focus on building a productivity prediction model, and the water flooding mechanism remains to be clearly perceived. Therefore, this paper was designed to accurately evaluate the stimulation effect of broadband fracturing in Changqing Oilfield and further reveal the seepage rules. The physical seepage field around the water injection well was divided into three zones according to the flow pattern of the oil-water two-phase flow, namely the main fracture zone with a linear flow, the broadband zone with an elliptical flow, and the matrix zone with a circular radial flow. Furthermore, the equivalent flow resistance method was employed to build a productivity model for broadband fracturing of the diamond inverted nine-spot well pattern with non-Darcy seepage. With an actual well group as an example, the influence brought by broadband width and equivalent permeability on the productivity of the well pattern were analyzed by numerical computation, and the change rules of daily liquid production were explored. This results suggest that the broadband fracturing technology dramatically boosts the daily oil production, recovery degree and daily liquid production of the well pattern, enlarges the lateral swept volume, enhances the uniformity of water flooding, and improves the productivity. The results of this paper can provide theoretical support for oilfields to optimize the technology of broadband fracturing on site.
-
-
-
[1] 王飞,齐银,达引朋,等. 超低渗透油藏老井宽带体积压裂缝网参数优化[J]. 石油钻采工艺,2019,41(5):643–648. doi: 10.13639/j.odpt.2019.05.015 WANG Fei, QI Yin, DA Yinpeng, et al. Optimization of fracture network parameters of the wide zone SRV by old well in ultra low-permeability oil reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(5): 643–648. doi: 10.13639/j.odpt.2019.05.015
[2] 周晓峰,王振军,黄卓,等. 长庆姬塬油田宽带压裂参数优化数值模拟与应用[J]. 钻采工艺,2021,44(3):47–51. ZHOU Xiaofeng,WANG Zhenjun,HUANG Zhuo, et al. Numerical simulation and application of broadband fracturing parameter optimization in Changqing Jiyuan Oilfield[J]. Drilling & Production Technology, 2021, 44(3): 47–51.
[3] 韩福勇,倪攀,孟海龙. 宽带暂堵转向多缝压裂技术在苏里格气田的应用[J]. 钻井液与完井液,2020,37(2):257–263. HAN Fuyong,NI Pan,MENG Hailong. Application of diversion through broadband temporary plugging multi-fracture fracturing technology in Sulige Gas Field[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 257–263.
[4] 李熠,张宁利,刘建升,等. 中高含水油井宽带压裂技术试验及应用[J]. 石油化工应用,2021,40(8):58–61. doi: 10.3969/j.issn.1673-5285.2021.08.012 LI Yi, ZHANG Ningli, LIU Jiansheng, et al. The trial and application of broadband fracturing technique for oil well during the phase of middle or high water content[J]. Petrochemical Industry Application, 2021, 40(8): 58–61. doi: 10.3969/j.issn.1673-5285.2021.08.012
[5] 马驷驹,董悦,张智旋,等. 宽带压裂技术在低渗透油藏中高含水井的应用[J]. 石油化工应用,2020,39(6):75–77. doi: 10.3969/j.issn.1673-5285.2020.06.017 MA Siju, DONG Yue, ZHANG Zhixuan, et al. The application of broadband fracturing technique on oil well reaching middle or high content of water in low permeability reservoir[J]. Petrochemical Industry Application, 2020, 39(6): 75–77. doi: 10.3969/j.issn.1673-5285.2020.06.017
[6] 陈亚联. 新型压裂技术应用分析[J]. 化工技术与开发,2020,49(1):38–41. doi: 10.3969/j.issn.1671-9905.2020.01.010 CHEN Yalian. Application analysis of fracturing technology[J]. Technology & Development of Chemical Industry, 2020, 49(1): 38–41. doi: 10.3969/j.issn.1671-9905.2020.01.010
[7] 夏德斌,杨正明,赵新礼,等. 超低渗油藏宽带压裂物理模拟实验研究[J]. 实验室研究与探索,2021,40(3):93–97. doi: 10.19927/j.cnki.syyt.2021.03.020 XIA Debin, YANG Zhengming, ZHAO Xinli, et al. Experimental study on physical simulation of broadband fracturing in ultra-low permeability reservoir[J]. Research and Exploration in Laboratory, 2021, 40(3): 93–97. doi: 10.19927/j.cnki.syyt.2021.03.020
[8] 巨江涛,张进科,张青锋. 姬塬油田宽带压裂工艺技术研究与应用[J]. 石油化工应用,2020,39(4):55–62. doi: 10.3969/j.issn.1673-5285.2020.04.013 JU Jiangtao, ZHANG Jinke, ZHANG Qingfeng. The study and application of broadband fracturing technique in Ji Yuan oil field[J]. Petrochemical Industry Application, 2020, 39(4): 55–62. doi: 10.3969/j.issn.1673-5285.2020.04.013
[9] 王瑞. 低渗透油藏油水两相流动压裂井产能研究[J]. 油气藏评价与开发,2021,11(5):760–765. doi: 10.13809/j.cnki.cn32-1825/te.2021.05.014 WANG Rui. Fracturing well productivity of low permeability reservoir with taking the oil-water two phase flow into consideration[J]. Reservoir Evaluation and Development, 2021, 11(5): 760–765. doi: 10.13809/j.cnki.cn32-1825/te.2021.05.014
[10] 周杨,李莉,吴忠宝,等. 低渗透油藏直井体积压裂产能评价新模型[J]. 科学技术与工程,2018,18(8):49–54. doi: 10.3969/j.issn.1671-1815.2018.08.008 ZHOU Yang, LI Li, WU Zhongbao, et al. A new productivity evaluation model of volume fracturing for vertical well in low permeability reservoirs[J]. Science Technology and Engineering, 2018, 18(8): 49–54. doi: 10.3969/j.issn.1671-1815.2018.08.008
[11] 李传亮,邓鹏,朱苏阳,等. 渗流圆的等效原则[J]. 新疆石油地质,2018,39(6):717–721. doi: 10.7657/XJPG20180614 LI Chuanliang, DENG Peng, ZHU Suyang, et al. Study on equivalent flow circle[J]. Xinjiang Petroleum Geology, 2018, 39(6): 717–721. doi: 10.7657/XJPG20180614
[12] YUE M, ZHANG Q T, ZHU W Y, et al. Effects of proppant distribution in fracture networks on horizontal well performance[J]. Journal of Petroleum Science and Engineering, 2020, 187: 1–12.
[13] 江利. 基于树状分形理论的气田回注井试井模型研究[D]. 成都: 西南石油大学, 2019. JIANG Li. Research on well test models of reinjection well in gas reservoirs based on tree-shaped fractal theory[D]. Chengdu: Southwest Petroleum University, 2019.
[14] 李辉,李珊,蔡潇,等. 页岩气储层裂缝结构分形特征研究: 以渝东南地区的4口页岩气井为例[J]. 石化技术,2021,28(4):140–141. doi: 10.3969/j.issn.1006-0235.2021.04.062 LI Hui, LI Shan, CAI Xiao, et al. Fractal characteristics of fracture structure in shale gas reservoir: take 4 shale gas wells in Southeast Chongqing as an example[J]. Petrochemical Industry Technology, 2021, 28(4): 140–141. doi: 10.3969/j.issn.1006-0235.2021.04.062
[15] 何岩峰,田鑫荣,窦祥骥,等. 考虑迂曲度的页岩气储层裂缝渗透率[J]. 断块油气田,2020,27(5):613–618. HE Yanfeng, TIAN Xinrong, DOU Xiangji, et al. Fracture permeability of shale gas reservoir considering tortuosity[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 613–618.
[16] 朱维耀,岳明,高英,等. 致密油层体积压裂非线性渗流模型及产能分析[J]. 中国矿业大学学报,2014,43(2):248–254. doi: 10.13247/j.cnki.jcumt.2014.02.011 ZHU Weiyao, YUE Ming, GAO Ying, et al. Nonlinear flow model and productivity of stimulated reservoir volume in tight oil reservoirs[J]. Journal of China University of Mining & Technology, 2014, 43(2): 248–254. doi: 10.13247/j.cnki.jcumt.2014.02.011
[17] 程林松. 渗流力学[M]. 北京: 石油工业出版社, 2011: 93−105. CHENG Linsong. Seepage mechanics[M]. Beijing: Petroleum Industry Press, 2011: 93−105.
[18] 周春香,夏林,黄强强. 基于等值渗流阻力的非均质油藏水驱前缘计算: 以非洲R油田为例[J]. 非常规油气,2018,5(5):83–86. doi: 10.3969/j.issn.2095-8471.2018.05.014 ZHOU Chunxiang, XIA Lin, HUANG Qiangqiang. Calculation of water flooding front of heterogeneous reservoir based on equivalent flowing resistance: taking R Oilfield as an example in Africa[J]. Unconventional Oil & Gas, 2018, 5(5): 83–86. doi: 10.3969/j.issn.2095-8471.2018.05.014
[19] 赵颖. 各向异性双重孔隙介质的应力与油水两相渗流耦合理论模型[J]. 工程力学,2012,29(2):222–229. ZHAO Ying. Fully coupled dual-porosity model for oil-water two-phase flow in anisotropic formations[J]. Engineering Mechanics, 2012, 29(2): 222–229.
[20] 王志平. 低渗透油藏整体压裂开发非达西渗流理论研究[D]. 北京: 北京科技大学, 2012. WANG Zhiping. Non-Darcy flow theory of overall fracturing and development in low permeability reservoir[D]. Beijing: University of Science & Technology Beijing, 2012.
[21] 李凤颖,洪楚侨,任超群,等. 低渗油藏压力波传播规律及对产能影响研究[J]. 石油化工应用,2015,34(4):10–13. doi: 10.3969/j.issn.1673-5285.2015.04.003 LI Fengying, HONG Chuqiao, REN Chaoqun, et al. The propagation law of pressure wave in low permeability reservoir and its impact on production capacity[J]. Petrochemical Industry Application, 2015, 34(4): 10–13. doi: 10.3969/j.issn.1673-5285.2015.04.003
[22] 曹仁义,程林松,杜旭林,等. 致密油藏渗流规律及数学模型研究进展[J]. 西南石油大学学报(自然科学版),2021,43(5):113–136. CAO Renyi, CHENG Linsong, DU Xulin, et al. Research progress on fluids flow mechanism and mathematical model in tight oil reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 113–136.
[23] 孙强,周海燕,胡勇,等. 反九点井网非活塞式水驱面积波及系数计算方法[J]. 复杂油气藏,2018,11(2):52–56. doi: 10.16181/j.cnki.fzyqc.2018.02.010 SUN Qiang, ZHOU Haiyan, HU Yong, et al. Calculation method of area sweep efficiency of non-piston water flooding for inverted 9-spot pattern[J]. Complex Hydrocarbon Reservoirs, 2018, 11(2): 52–56. doi: 10.16181/j.cnki.fzyqc.2018.02.010
[24] 蒲军,刘传喜,尚根华. 基于流线积分法的注水井网非稳态产量模型[J]. 西南石油大学学报(自然科学版),2016,38(5):97–106. PU Jun, LIU Chuanxi, SHANG Genhua. Non-steady water-flooding production model of areal well pattern based on flow line integral method[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(5): 97–106.
-
期刊类型引用(4)
1. 曾波,冯宁鑫,姚志广,杜雨柔,黎俊峰,郑健,衡德,唐煊赫,朱海燕. 深层页岩气储层水力压裂裂缝扩展影响机理. 断块油气田. 2024(02): 246-256 . 百度学术
2. 唐可,赵勇,李凯,宁朦,蒲万芬,田开平. 致密油藏压裂井气驱暂堵调剖剂研制与评价. 特种油气藏. 2023(02): 161-167 . 百度学术
3. 肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 . 百度学术
4. 殷洪川,胥良君,吕泽宇,庞进,唐雯,陈渝页. 页岩气井临界出砂产量预测方法. 特种油气藏. 2023(06): 135-140 . 百度学术
其他类型引用(0)