顺北油气田断裂带超深水平井优快钻井技术

Optimal and Fast Drilling Technologies for Ultra-Deep Horizontal Wells in the Fault Zones of the Shunbei Oil & Gas Field

  • 摘要: 为解决顺北油气田断裂带超深水平井钻井过程中的漏失、坍塌、气侵和随钻测量仪器抗温能力低等问题,从而提高钻井速度、缩短钻井周期,利用井震联合识别技术与修正的三压力剖面,优选了井口位置、确定了必封点,将井身结构优化为四级井身结构;基于裂缝性质分析与室内试验,优选了防漏堵漏浆和封堵防塌体系的配方,保障了长裸眼井段井壁的稳定;垂直钻井系统与大扭矩螺杆配合解决深部地层岩石强度高与易井斜的问题,实现了防斜打快;设计在低温井段造斜、在高温井段稳斜的井身剖面,采用微增斜钻具组合、采取针对性技术措施,解决了随钻测量仪器抗温能力低的问题;利用低密度钻井液+简易控压钻井技术解决了储层气侵、井涌和井漏的问题。通过技术研究和制定针对性技术措施,形成了适用于顺北油气田断裂带超深水平井的优快钻井技术。该技术在顺北油气田断裂带6口超深水平井进行了应用,钻井过程中漏失、坍塌、气侵和随钻测量仪器抗温能力低等问题都基本得到解决,与未应用该技术的邻井相比,平均机械钻速提高了116.2%,平均钻井周期缩短了41.2%。研究和现场应用结果表明,超深井水平井优快钻井技术可以解决顺北油气田断裂带超深水平井钻井过程中存在的问题,提高钻井速度、缩短钻井周期,为顺北油气田勘探开发提供技术支持。

     

    Abstract: Ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field face problems such as leakage, collapse, gas cut, and low ability of temperature resistance of measure while drilling (MWD). In order to solve these problems, and to increase the drilling speed, and shorten the drilling period, the well-seismic identification technology and the modified three-pressure profile were employed to select the wellhead and determine the sealing point, and the casing program was optimized to a four-stage structure. Then, based on the fracture property analysis and laboratory experiments, the formula of anti-leakage and anti-collapse drilling fluid system was selected to ensure the stability of the long open hole wellbore. In addition, a vertical drilling system worked with a large torque screw to solve problems of high rock strength and easy well deviation in deep formation to achieve anti-deviation and fast drilling. Furthermore, a borehole profile of deflecting in the low-temperature section and holding in the high-temperature section were designed. Then, a slightly buildup drill assembly and targeted technical measures were adopted to solve the low temperature resistance of MWD. Finally, the low-density drilling fluid and the simple managed pressure drilling technology were applied to deal with the gas cut, kick, and circulation loss in the reservoir. Through technical research and targeted measures, optimal and fast drilling technologies suitable for ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field were developed. These technologies have been applied in six ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field, and the problems including leakage, collapse, gas cut, and low temperature resistance of MWD were basically solved. Compared with that of adjacent wells without using these technologies, the average rate of penetration (ROP) of these wells was increased by 116.2%, and the average drilling duration was reduced by 41.2%. Research and field application show that the optimal and fast drilling technologies for ultra-deep horizontal can address the problems in the drilling process of ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field. They can also increase the ROP and shorten the drilling duration, which can provide technical support for exploring and developing the Shunbei Oil & Gas Field.

     

/

返回文章
返回