Research and Application of Slick Water and Gel-Liquid Integrated Fracturing Fluids
-
摘要:
滑溜水黏度较低,不能满足造缝、携带大粒径支撑剂和高砂比施工要求,限制了非常规储层大型压裂效率的提高。为此,以丙烯酸、丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸和单体A为原料,采用反相乳液聚合法合成了一种耐高温、速溶型聚合物降阻剂SFFRE-1。通过研发与降阻剂SFFRE-1配伍性好的高效助排剂和优选黏土稳定剂,形成了滑溜水–胶液一体化压裂液。该压裂液耐温160 ℃,通过调整降阻剂SFFRE-1的加量,其黏度在1~120 mPa·s可调,在压裂施工过程中能够实现滑溜水和胶液在线混配及即时切换的要求。该压裂液在四川盆地的页岩气井和胜利油田的致密油井进行了应用,压裂过程中压裂液表现出良好的降阻和携砂性能,降阻率最高达到86%,砂比最高达到43%。研究和现场应用表明,滑溜水–胶液一体化压裂液能够满足非常规储层大型压裂施工需求。
Abstract:Due to its low viscosity, slick water has limited efficacy in inducing fractures, low carrying capacity for large particles, and a low sand concentration that fails to meet the needs for operation, which limits the efficiency of large-scale fracturing in unconventional reservoirs. Therefore, SFFRE-1, a heat resistant friction reducer dissolves instantly with acrylic acid(AA), acrylamide(AM), 2-acrylamide-2-methylpropyl sulfonic acid(AMPS) and Monomer A as raw materials, was developed by inverse emulsion polymerization. A slick water and gel-liquid integrated fracturing fluid was produced by researching and developing an optimal clay stabilizer and an efficient cleanup agent highly compatible with SFFRE-1. The resulting fracturing fluid can resist temperature as high as 160 °C, and its viscosity can be adjusted from 1 to 120 mPa·s by adjusting added amount of SFFRE-1. In this way, on site mixing and real-time transition between the slick water and gel-liquid in fracturing treatments can be achieved. The fracturing fluid has been applied in shale gas wells in Sichuan Basin and tight oil wells in Shengli Oilfield. It has shown excellent performance in friction reduction and sand carrying: the friction reduction rate reached 86% and the sand concentration was boosted to 43%. The research and field application show that the slick water and gel-liquid integrated fracturing fluid can meet the requirements of large-scale fracturing in unconventional reservoirs.
-
-
表 1 SFCU-1的基本性能
Table 1 Basic properties of SFCU-1
序号 测试溶液 表面张力/
(mN·m−1)界面张力/
(mN·m−1)降阻率,% 1 清水 72.00 25.00 2 0.1% SFCU-1 22.77 1.23 3 0.1% SFCU-1+
0.1% SFFRE-123.60 1.32 80 4 0.1% SFCU-1+
0.1% SFFRE-1+
0.3%黏土稳定剂23.80 1.56 83 表 2 黏土稳定剂的基本性能
Table 2 Basic properties of the clay stabilizer
序号 液体 防膨率,% 黏度/(mPa·s) 1 0.3%黏土稳定剂1 66.3 2 0.3%黏土稳定剂2 79.4 3 0.3%黏土稳定剂3 83.6 4 0.3%黏土稳定剂3+0.1%SFFRE-1+
0.1%SFCU-182.0 3.5 5 0.3%黏土稳定剂3+0.3%SFFRE-1+
0.1%SFCU-183.6 13.5 表 3 滑溜水–胶液一体化压裂液破胶试验结果
Table 3 Gel breaking experimental results of the slick waterand gel-liquid integrated fracturing fluids
破胶剂及加量 温度/
℃破胶时间/min 破胶液黏度/(mPa·s) 残渣含量/(mg·L−1) 0.05%(NH4)2S2O8 90 60 3 52 0.05%K2S2O8 60 3 55 0.05%NaBrO3 60 3 52 表 4 不同压裂液破胶液伤害试验结果
Table 4 Experimental results of gel breaker damage of different fracturing fluids
岩心编号 直径/cm 长度/cm 孔隙度,% 渗透率/mD 伤害率,% 备注 伤害前 伤害后 1 2.484 5.108 7.63 0.128 0.051 60.2 胍胶压裂液 2 2.480 4.766 7.09 0.109 0.042 61.5 3 2.492 5.592 7.30 0.109 0.094 13.8 一体化压裂液 4 2.484 5.264 7.08 0.108 0.092 14.8 表 5 胜利油田高青、梁家楼区块一体化压裂液应用效果统计
Table 5 Application effect statistics of the integrated fracturing fluids in Gaoqing and Liangjialou Blocks in Shengli Oilfield
井号 储层类型 砂比,% 降阻率,% C97X22 致密砂岩 42 75 C87-1 致密砂岩 42 75 L78X10 致密砂岩 42 75 L78X11 致密砂岩 42 75 L78X12 致密砂岩 42 75 G946X1 致密砂岩 43 75 L121X2 页岩油 43 75 L106X7 页岩油 41 75 -
[1] 贾金亚,魏娟明,贾文峰,等. 页岩气压裂用滑溜水胶液一体化稠化剂研究[J]. 应用化工,2019,48(6):1247–1250. doi: 10.3969/j.issn.1671-3206.2019.06.001 JIA Jinya, WEI Juanming, JIA Wenfeng, et al. Research on the integrated thickener of slippery water glue for shale gas fracturing[J]. Applied Chemical Industry, 2019, 48(6): 1247–1250. doi: 10.3969/j.issn.1671-3206.2019.06.001
[2] 范家伟,袁野,李绍华,等. 塔里木盆地深层致密油藏地质工程一体化模拟技术[J]. 断块油气田,2022,29(2):194–198. FAN Jiawei, YUAN Ye, LI Shaohua, et al. Geology-engineering integrated simulation technology of deep tight oil reservoir in Tarim Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 194–198.
[3] 杨浩,李新发,陈鑫,等. 低渗透气藏水平井分段压裂分段优化方法研究[J]. 特种油气藏,2021,28(1):125–129. YANG Hao, LI Xinfa, CHEN Xin, et al. tudy on staged optimization method of staged fracturing for horizontal wells in low-permeability gas reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 125–129.
[4] 张炜. 深部页岩压裂缝网体积模拟及应用[J]. 石油钻采工艺,2021,43(1):97–103. ZHANG Wei. Deep shale hydraulic fracture network volume model and its application[J]. Oil Drilling & Production Technology, 2021, 43(1): 97–103.
[5] 张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15. ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15.
[6] 慕立俊,吴顺林,徐创朝,等. 基于缝网扩展模拟的致密储层体积压裂水平井产能贡献分析[J]. 特种油气藏,2021,28(2):126–132. MU Lijun, WU Shunlin, XU Chuangchao, et al. Analysis on contribution to productivity of SRV-fractured horizontal wells in tight reservoirs based on simulation of fracture network propagation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 126–132.
[7] 王波,王佳,罗兆,等. 水平井段内多簇清水体积压裂技术及现场试验[J]. 断块油气田,2021,28(3):408–413. WANG Bo, WANG Jia, LUO Zhao, et al. Multi-cluster clean water volume fracturing technology in horizontal well section and field test[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 408–413.
[8] 魏娟明,刘建坤,杜凯,等. 反相乳液型减阻剂及滑溜水体系的研发与应用[J]. 石油钻探技术,2015,43(1):27–32. WEI Juanming, LIU Jiankun, DU Kai, et al. Development and application of inverse emulsion drag reducer and slippery water system[J]. Petroleum Drilling Techniques, 2015, 43(1): 27–32.
[9] 陈作,曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术,2016,44(1):6–11. CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016, 44(1): 6–11.
[10] 陈鹏飞,唐永帆,刘友权,等. 页岩气藏滑溜水压裂用降阻剂性能影响因素研究[J]. 石油与天然气化工,2014,43(4):405–408. doi: 10.3969/j.issn.1007-3426.2014.04.013 CHEN Pengfei, TANG Yongfan, LIU Youquan, et al. Influencing factors of friction reducer in shale slickwater fracturing[J]. Chemical Engineering of Oil and Gas, 2014, 43(4): 405–408. doi: 10.3969/j.issn.1007-3426.2014.04.013
[11] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术,2018,46(1):1–9. LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
[12] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001 LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
[13] 王丽伟,高莹,杨战伟,等. 深层油气用加重滑溜水压裂液体系[J]. 钻井液与完井液,2020,37(6):794–797. WANG Liwei,YANG Jingxu, GAO Ying,et al. Study on weighted slick water fracturing fluid for deep buried oil and gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 794–797.
[14] 李平,樊平天,郝世彦,等. 大液量大排量低砂比滑溜水分段压裂工艺应用实践[J]. 石油钻采工艺,2019,41(4):534–540. LI Ping, FAN Pingtian, HAO Shiyan, et al. Application practice of the slick-water staged fracturing of massive fluid, high displacement and low sand concentration[J]. Oil Drilling & Production Technology, 2019, 41(4): 534–540.
[15] 李远照,李婷,王犁,等. 基于刺激响应策略的可控滑溜水研究[J]. 钻井液与完井液,2020,37(6):784–788. LI Yuanzhao, LI Ting, WANG Li, et al. tudy on controllable slick water based on stimulus response strategy[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 784–788.
[16] CONSTIEN V G, BRANNON H D. Method of hydrating oil based fracturing concentrate and continuous fracturing process using same: US4828034[P]. 1989 − 05 − 09.
[17] AFTEN C W. Study of friction reducers for recycled stimulation fluids in environmentally sensitive regions[R]. SPE 138984, 2010.
[18] 蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业,2017,37(1):90–96. doi: 10.3787/j.issn.1000-0976.2017.01.011 JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1): 90–96. doi: 10.3787/j.issn.1000-0976.2017.01.011
[19] 田福春,刘学伟,张胜传,等. 大港油田陆相页岩油滑溜水连续加砂压裂技术[J]. 石油钻探技术,2021,49(4):118–124. doi: 10.11911/syztjs.2021021 TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, et al. Continuous sand fracturing technology with slick water for continental shale oil in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 118–124. doi: 10.11911/syztjs.2021021
[20] 杜凯,黄凤兴,伊卓,等. 页岩气滑溜水压裂用降阻剂研究与应用进展[J]. 中国科学:化学,2014,44(11):1696–1704. doi: 10.1360/N032014-00149 DU Kai, HUANG Fengxing, YI Zhuo, et al. Recent advances on friction reducer for slickwater fracturing of shale gas reservoirs[J]. Scientia Sinica Chimica, 2014, 44(11): 1696–1704. doi: 10.1360/N032014-00149
[21] 张松柏. 苏里格气田压裂液配方优化研究[D]. 青岛: 中国石油大学(华东), 2018. ZHANG Songbai. Optimization of fracturing fluid formulation in Sulige Gas Field[D]. Qingdao: China University of Petroleum (East China), 2018.
[22] 杜涛,姚奕明,蒋廷学,等. 页岩气压裂用线性胶压裂液性能研究与现场应用[J]. 化学世界,2015,56(11):666–670. DU Tao, YAO Yiming, JIANG Tingxue, et al. Study on properties of linear gel fracturing fluid and its field application for shale gas well[J]. Chemical World, 2015, 56(11): 666–670.
[23] 魏向博,李小瑞,王磊,等. 疏水缔合压裂液用稠化剂HAP-1 的制备及性能评价[J]. 现代化工,2016,36(10):104–108. WEI Xiangbo, LI Xiaorui, WANG Lei, et al. Preparation and performance evaluation of thickener HAP-1 for hydrophobically associating fracturing fluids[J]. Modern Chemical Industry, 2016, 36(10): 104–108.
[24] 李延芬,朱荣娇,孙永菊,等. 两性疏水缔合聚丙烯酰胺的合成及性能[J]. 精细化工,2012,29(5):499–504,516. LI Yanfen, ZHU Rongjiao, SUN Yongju, et al. Synthesis and performance evaluation of amphoteric hydrophobic association polyacrylamide[J]. Fine Chemicals, 2012, 29(5): 499–504,516.
[25] 赵金洲,王松,李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业,2012,32(4):46–49. doi: 10.3787/j.issn.1000-0976.2012.04.011 ZHAO Jinzhou, WANG Song, LI Yongming. Difficulties and technical key points of fracturing reformation of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(4): 46–49. doi: 10.3787/j.issn.1000-0976.2012.04.011
[26] 蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术,2011,39(3):36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006 JIANG Tingxue, JIA Changgui, WANG Haitao, et al. Study on network fracturing design method in shale gas[J]. Petroleum Drilling Techniques, 2011, 39(3): 36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006
[27] 贾长贵. 页岩气高效变黏滑溜水压裂液[J]. 油气田地面工程,2013,32(11):1–2. doi: 10.3969/j.issn.1006-6896.2013.11.001 JIA Changgui. High-efficiency variable viscous slick water fracturing fluid for shale gas[J]. Oil-Gasfield Surface Engineering, 2013, 32(11): 1–2. doi: 10.3969/j.issn.1006-6896.2013.11.001
[28] YANG Bo, ZHAO Jinzhou, MAO Jincheng, et al. Review of friction reducers used in slickwater fracturing fluids for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 302–313.
[29] HSIN C C, THOMAS N, YE X, et al. A friction reducer: self-cleaning to enhance conductivity for hydraulic fracturing[R]. SPE 170602, 2014.
[30] 曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073 ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
-
期刊类型引用(11)
1. 张昕,丁秋炜,滕大勇,陈庆栋,周际永. 螯合剂对海水基聚合物压裂液耐温耐剪切性能的影响. 当代化工. 2025(01): 42-45+52 . 百度学术
2. 赵金洲,雍锐,胡东风,佘朝毅,付永强,吴建发,蒋廷学,任岚,周博,林然. 中国深层—超深层页岩气压裂:问题、挑战与发展方向. 石油学报. 2024(01): 295-311 . 百度学术
3. 邢亮,董正亮,张衍君,张燕如. 压裂-闷井-返排一体化工作液研究进展. 油田化学. 2024(04): 738-748 . 百度学术
4. 林永茂,缪尉杰,王兴文,慈建发,邓艺平,刘林,邱玲. 超深层页岩气多域裂缝压裂实践. 西南石油大学学报(自然科学版). 2024(06): 115-128 . 百度学术
5. 范宇恒,周丰,蒋廷学,张士诚,白森,张晓锋,杨泉,余维初. 页岩气环保变黏压裂液的研究与应用. 特种油气藏. 2023(02): 147-152 . 百度学术
6. 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨. 石油钻探技术. 2023(04): 184-191 . 本站查看
7. 程长坤,熊廷松,刘永,谢贵琪,刘欢,冯昕媛,贾文峰. 超高矿化度地层水基一体化渗吸驱油压裂液的制备及性能评价. 精细石油化工. 2023(06): 14-18 . 百度学术
8. 王兴文,缪尉杰,何新星,许剑. 川南威荣气田深层页岩气工程技术进展. 石油实验地质. 2023(06): 1170-1177 . 百度学术
9. 林海,张成娟,赵文凯,万有余,王志晟,郭得龙,王金冉,贾文峰. 增黏助排一体化聚合物分散液制备及性能评价. 钻井液与完井液. 2023(05): 678-684 . 百度学术
10. 龚嘉顺,李锦锋,李倩,王茜,蔡廷强,黄飞飞,武佳. 新型纳米复合聚合物压裂液体系研究及应用. 钻采工艺. 2023(06): 133-139 . 百度学术
11. 纪成,赵兵,李建斌,罗攀登,房好青. 温度响应地下自生成支撑剂研究. 石油钻探技术. 2022(04): 45-51 . 本站查看
其他类型引用(0)