滑溜水–胶液一体化压裂液研究与应用

魏娟明

魏娟明. 滑溜水–胶液一体化压裂液研究与应用[J]. 石油钻探技术, 2022, 50(3): 112-118. DOI: 10.11911/syztjs.2022063
引用本文: 魏娟明. 滑溜水–胶液一体化压裂液研究与应用[J]. 石油钻探技术, 2022, 50(3): 112-118. DOI: 10.11911/syztjs.2022063
WEI Juanming. Research and Application of Slick Water and Gel-Liquid Integrated Fracturing Fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112-118. DOI: 10.11911/syztjs.2022063
Citation: WEI Juanming. Research and Application of Slick Water and Gel-Liquid Integrated Fracturing Fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112-118. DOI: 10.11911/syztjs.2022063

滑溜水–胶液一体化压裂液研究与应用

基金项目: 中国石化科技攻关项目“深层页岩气高导流复杂缝网压裂关键技术”(编号:P20046-3)资助
详细信息
    作者简介:

    魏娟明(1968—),女,山东平度人,1990年毕业于石油大学(华东)应用化学专业,2011年获中国地质大学(北京)油气田开发工程专业博士学位,高级工程师,主要从事压裂酸化助剂的研发工作。E-mail: weijm.sripe@sinopec.com。

  • 中图分类号: TE357.1+3

Research and Application of Slick Water and Gel-Liquid Integrated Fracturing Fluids

  • 摘要:

    滑溜水黏度较低,不能满足造缝、携带大粒径支撑剂和高砂比施工要求,限制了非常规储层大型压裂效率的提高。为此,以丙烯酸、丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸和单体A为原料,采用反相乳液聚合法合成了一种耐高温、速溶型聚合物降阻剂SFFRE-1。通过研发与降阻剂SFFRE-1配伍性好的高效助排剂和优选黏土稳定剂,形成了滑溜水–胶液一体化压裂液。该压裂液耐温160 ℃,通过调整降阻剂SFFRE-1的加量,其黏度在1~120 mPa·s可调,在压裂施工过程中能够实现滑溜水和胶液在线混配及即时切换的要求。该压裂液在四川盆地的页岩气井和胜利油田的致密油井进行了应用,压裂过程中压裂液表现出良好的降阻和携砂性能,降阻率最高达到86%,砂比最高达到43%。研究和现场应用表明,滑溜水–胶液一体化压裂液能够满足非常规储层大型压裂施工需求。

    Abstract:

    Due to its low viscosity, slick water has limited efficacy in inducing fractures, low carrying capacity for large particles, and a low sand concentration that fails to meet the needs for operation, which limits the efficiency of large-scale fracturing in unconventional reservoirs. Therefore, SFFRE-1, a heat resistant friction reducer dissolves instantly with acrylic acid(AA), acrylamide(AM), 2-acrylamide-2-methylpropyl sulfonic acid(AMPS) and Monomer A as raw materials, was developed by inverse emulsion polymerization. A slick water and gel-liquid integrated fracturing fluid was produced by researching and developing an optimal clay stabilizer and an efficient cleanup agent highly compatible with SFFRE-1. The resulting fracturing fluid can resist temperature as high as 160 °C, and its viscosity can be adjusted from 1 to 120 mPa·s by adjusting added amount of SFFRE-1. In this way, on site mixing and real-time transition between the slick water and gel-liquid in fracturing treatments can be achieved. The fracturing fluid has been applied in shale gas wells in Sichuan Basin and tight oil wells in Shengli Oilfield. It has shown excellent performance in friction reduction and sand carrying: the friction reduction rate reached 86% and the sand concentration was boosted to 43%. The research and field application show that the slick water and gel-liquid integrated fracturing fluid can meet the requirements of large-scale fracturing in unconventional reservoirs.

  • 在油气井固井作业中,有效清洗井壁与套管上的附着物、顶替环空中的钻井液,是保证固井质量的关键。因此,应用高效冲洗液是提高水泥环胶结质量的主要措施。目前,国内外常用的固井冲洗液可分为水基冲洗液和油基冲洗液2类[1-5],主要有清水型冲洗液、乳化型冲洗液、黏性冲洗液、饱和盐水冲洗液等,虽然基本满足了油气井固井要求,但存在沉降稳定性比较差、对油基钻井液或含油钻井液的冲洗效率低、油膜冲洗效果不佳等缺点。近年来,页岩油气井的数量越来越多,且多应用油基钻井液钻进,应用常规冲洗液进行固井作业时,很难有效清洗井壁上的含油滤饼和套管壁附着的油膜,严重影响水泥环胶结质量,不但难以实现环空的有效封隔,出现环空带压现象,而且无法满足后期大型压裂作业对水泥环胶结质量的要求,影响了压裂增产效果,也增加了油气井生产风险[6-7]。因此,需要研制高效冲洗液,以提高固井质量。目前,国内外已研制出一些高效冲洗液[8-10],但种类比较少,功能和用途比较单一,且适应性差,很难满足油基钻井液条件下提高固井质量的要求。为此,基于加强冲洗液物理冲刷作用的研究思路,优选了有尖锐棱角、形状不规则的多棱石英砂颗粒,并优化了其加量、优选了悬浮剂,配制了多棱石英砂冲洗液。该冲洗液在胜利油田4口井进行了成功应用,固井施工顺利,固井质量明显提高。

    冲洗液中加入不规则形状的多棱石英砂后,将常规冲洗液中圆形石英砂与套管壁/井壁附着物的单点、面、滚动摩擦接触,改变为多点、更大侵入深度、滑动摩擦接触。同时,流体中存在压力和速度梯度、多棱石英砂颗粒相互碰撞等原因,可导致石英砂颗粒旋转,产生升力效应。这几方面因素协同作用,增大了多棱石英砂冲洗液的作用力度,增强了对套管壁/井壁虚滤饼及其他附着物的冲刷效果,提高了井眼净化程度及冲洗效率,有利于提高水泥环胶结质量。

    石英石是一种坚硬、耐磨、化学性能稳定的硅酸盐矿物,其主要矿物成分是SiO2,具有硬度高、耐热、抗压和不易腐蚀等特点。多棱石英砂是由石英石破碎分筛加工而成,石英石破碎后出现多种不规则颗粒,分筛就得到不同粒径的石英砂,它呈不规则颗粒状,有锋利的棱角,颗粒边缘呈棱状,堆积空隙比较大。由多棱石英砂颗粒的电镜扫描分析结果(见图1)可知,多棱石英砂呈不规则多面体,边角锋利,有尖锐顶角。

    图  1  石英砂颗粒电镜扫描分析结果
    Figure  1.  SEM analysis results of quartz sand particles

    利用BT-9300LD激光粒度分布仪(湿法)对多棱石英砂进行了粒度分布测试,结果如图2所示。从图2可以看出,多棱石英砂的粒度约60目,粒径中值37.49 μm,比表面积194.5 m2/kg。

    图  2  多棱石英砂粒度分析结果
    Figure  2.  Grain size analysis of polygonal quartz sand

    悬浮剂主要用于防止冲洗液中的颗粒沉降、增加稳定性,对于提高冲洗效率和固井质量有重要作用。为此,优选了SYXF-1、KCM004、KCM006和SYJ-1等4种常用悬浮剂,按不同加量加入多棱石英砂冲洗液中,静置3 h后观察液体分层及石英砂的沉降情况,并测量浆体上部和下部的密度,结果见表1。由表1可知:加入悬浮剂SYXF-1和SYJ-1的冲洗液,上下明显分层或石英砂基本全沉底,说明其无法满足冲洗液的稳定性要求;悬浮剂KCM006加量为0.4%~0.5%时冲洗液稳定性较好,但加量为0.6%时浆体就成为胶冻状,说明浆体稳定性对加量太敏感,现场施工难以控制;随着悬浮剂KCM004加量的增大,冲洗液上下密度差逐渐缩小,直至为0,说明冲洗液的悬浮能力不断增强,能够满足冲洗液的稳定性要求。因此,选用悬浮剂KCM004作为多棱石英砂冲洗液的悬浮剂。

    表  1  4种常用悬浮剂的悬浮能力测试结果
    Table  1.  Test results of suspension capacity of four common suspending agents
    悬浮剂悬浮剂加量,%冲洗液密度/(kg·L−1)试验现象
    上部下部上下差
    SYXF-10.51.141.440.30上下明显分层
    1.01.171.410.24上下明显分层
    2.01.211.350.14上下明显分层
    KCM0040.31.211.360.15上下明显分层
    0.41.221.270.05上下基本均匀
    0.51.231.230上下均匀
    1.01.231.230上下均匀
    KCM0060.41.201.260.06上下基本均匀
    0.51.211.250.04上下基本均匀
    0.6浆体呈胶冻状
    SYJ-10.91.02石英砂基本全沉底
    2.01.02石英砂基本全沉底
    3.01.03石英砂基本全沉底
    注:多棱石英砂质量分数为44%,冲洗液理论密度为1.23 kg/L。
    下载: 导出CSV 
    | 显示表格

    以KCM004为悬浮剂,配制了5种密度的多棱石英砂冲洗液,并对其沉降稳定性、游离液稳定性和流动性进行了评价。

    1)沉降稳定性试验。用常压稠化仪将多棱石英砂冲洗液在室温下养护20 min,倒入500 mL量筒内,在室温下静置4 h,然后用注射器分别吸出顶部和底部170 mL的冲洗液,测量其密度,并计算密度差,以评价冲洗液的沉降稳定性。试验结果见表2

    表  2  不同配方多棱石英砂冲洗液的基本性能
    Table  2.  Basic performance of polygonal quartz sand flushing fluid with different formulas
    配方密度/(kg·L−1上下密度差/(kg·L−1漏斗黏度/s
    11.110.0143
    21.210.0144
    31.31060
    41.42068
    51.520130
    注:配方1为0.4%悬浮剂KCM004+16.8%多棱石英砂+水;配方2为0.4%悬浮剂KCM004+36.6%多棱石英砂+水;配方3为0.6%悬浮剂KCM004+59.4%多棱石英砂+水;配方4为0.6%悬浮剂KCM004+86.2%多棱石英砂+水;配方5为0.6%悬浮剂KCM004+117.6%多棱石英砂+水。
    下载: 导出CSV 
    | 显示表格

    2)游离液稳定性试验。用常压稠化仪将多棱石英砂冲洗液在室温下养护20 min,倒入250 mL量筒内,在室温下静置4 h,然后用注射器吸出量筒上部的游离液,并量取体积。结果发现,5种配方多棱石英砂冲洗液的游离液均为0,表明该冲洗液具有良好的稳定性。

    3)流动性试验。用常压稠化仪将棱石英砂冲洗液在室温下养护20 min,然后用马氏漏斗测量冲洗液的漏斗黏度,以评价其流动性。试验结果见表2

    表2可知:5种配方下多棱石英砂冲洗液的上下密度差均不超过0.01 kg/L,而且游离液皆为0,表明其具有很好的沉降稳定性;多棱石英砂冲洗液的密度能超过1.50 kg/L,可以满足不同井况的固井要求,但随着冲洗液密度提高,需增大悬浮剂加量,导致冲洗液的漏斗黏度不断增大,从而流动性变差,难以满足湍流注入的施工要求。因此确定优先应用配方1—配方4的多棱石英砂冲洗液。

    基于目前已有的冲洗效率试验方法[11-14],对六速旋转黏度计进行了改装,采用底部封口的同尺寸转筒代替不锈钢转筒,研制了新型冲洗效率评价试验装置。试验方法为:在室温下称取洁净干燥转筒质量(W0),然后在钻井液杯中倒入钻井液至刻度线,调节托板高低使半封闭外筒浸在钻井液中至警戒线,使外筒以600 r/min的转速旋转5 min后停止;调节托板让外筒完全脱离钻井液杯,静置3 min,称取外筒及其粘附钻井液的质量(W1);将待测冲洗液倒入钻井液杯中,使粘附钻井液的外筒浸入冲洗液中至警戒线,使外筒以600 r/min的转速旋转5 min后停止;调节托板让外筒完全脱离钻井液杯,静置3 min,称取外筒及其粘附钻井液的质量(W2);冲洗效率即为钻井液损失质量(W1W2)与钻井液质量(W1W0)的比值。

    选取4口井实际使用的钻井液,对多棱石英砂冲洗液的冲洗效率进行测试,钻井液基本性能见表3。按照表2中的配方1—配方3,分别以多棱石英砂、普通石英砂、重晶石配制出不同冲洗液,在室温条件下进行不同钻井液的冲洗效率评价试验,结果见表4。由表4可知:无论是用于水基钻井液还是油基钻井液,与普通石英砂冲洗液及重晶石加重冲洗液相比,多棱石英砂冲洗液的冲洗效率均高10~30百分点;对于不同类型的钻井液,多棱石英砂冲洗液的冲洗效率有差异,对水基聚合物钻井液的冲洗效率最高,油基钻井液次之,水基无固相钻井液最低。

    表  3  4口井现场应用钻井液的基本性能
    Table  3.  Basic on-site application performance of drilling fluid system in four wells
    序号井号钻井液密度/
    (kg·L−1
    API滤失量/mL塑性黏度/
    (mPa·s)
    动切力/Pa
    钻井液1X50-xj1井水基无固相1.2352166.0
    钻井液2Cl20-x33井水基聚合物1.1441224.0
    钻井液3C13-x332井水基聚合物1.1845126.0
    钻井液4Fyp1井合成基1.6026358.5
    下载: 导出CSV 
    | 显示表格
    表  4  不同冲洗液冲洗效率试验结果
    Table  4.  Flushing efficiency test results of different flushing fluid
    钻井液冲洗液配方W0/gW1/gW2/g冲洗效率,
    %
    钻井液1配方2(多棱石英砂)164.70167.92165.9660.8
    配方2(普通石英砂)164.70167.51166.0751.2
    配方2(重晶石)164.70167.18166.0346.4
    钻井液3配方1(多棱石英砂)164.75173.50165.3093.2
    配方1(普通石英砂)164.75172.95166.3480.6
    配方1(重晶石)164.75173.83167.6168.5
    钻井液4配方3(多棱石英砂)164.91166.93165.3478.7
    配方3(普通石英砂)164.91166.81165.6163.2
    配方3(重晶石)164.91167.23166.0650.4
    下载: 导出CSV 
    | 显示表格

    将低密度防漏水泥浆、多棱石英砂冲洗液、钻井液按不同比例进行掺混,应用常压稠化仪在65 ℃温度下进行混合液稠化试验。试验发现,多棱石英砂冲洗液与钻井液、低密度防漏水泥浆混合后的稠化曲线平滑、无稠度突变点,且没有稠化时间缩短、稠度异常升高现象(见表5),表明三者具有良好的相容性,能够满足固井作业时安全注入的要求。

    表  5  多棱石英砂冲洗液与常用水泥浆、钻井液的相 容性试验结果
    Table  5.  Compatibility test results of polygonal quartz sand flushing fluid with common cement slurry and drilling fluid
    混合液组成掺混比例稠化时间/min稠度/Bc
    水泥浆∶冲洗液∶钻井液17∶2∶125218
    水泥浆∶冲洗液∶钻井液11∶1∶124010
    水泥浆∶冲洗液∶钻井液17∶3∶02606
    水泥浆∶冲洗液∶钻井液27∶2∶127016
    水泥浆∶冲洗液∶钻井液21∶1∶125511
    水泥浆∶冲洗液∶钻井液37∶2∶126314
    水泥浆∶冲洗液∶钻井液31∶1∶12459
    水泥浆∶冲洗液∶钻井液47∶2∶126826
    水泥浆∶冲洗液∶钻井液41∶1∶126017
    注:①为水泥浆、冲洗液和钻井液的体积比。
    下载: 导出CSV 
    | 显示表格

    室内试验结果表明,多棱石英砂冲洗液具有浆体稳定性好、与水泥浆及钻井液相容性好、冲洗效率高等优点,完全可以满足现场固井施工及提高固井质量的需求。

    截至目前,多棱石英砂冲洗液已在乐安油田4口油井(C13-x332井、C13-x112井、B17-x292井和Fyp1井,前3口井是定向井,Fyp1井是水平井)的固井作业中进行了应用,均顺利完成,未出现井下故障,固井质量都得到了明显提高。

    C13区块的C13-x332井和C13-x112井、B17区块的B17-x292井均应用水基钻井液钻进,设计井深1 500~2 500 m,采用二开井身结构。3口井固井作业中应用了密度1.20 kg/L的多棱石英砂冲洗液,注入体积均为12 m3,固井施工一切正常,声幅测井结果显示(见表6),C13区块2口井的固井质量合格率96.0%、优良率71.7%(该区块应用常规冲洗液的C13-x330井固井质量合格率46.5%、优良率为16.6%),B17-x292井的固井质量合格率97.0%、优良率89.6%(该区块应用常规冲洗液的B17-x037井固井质量合格率86.0%、优良率为56.6%),3口井的固井质量均明显提高。这说明多棱石英砂冲洗液能有效冲刷井壁,清除滤饼,隔离和减少钻井液对于水泥浆的污染,从而提高第二界面固井质量。

    表  6  多棱石英砂冲洗液在3口井中的应用效果
    Table  6.  Application effect of polygonal quartz sand flushing fluid in three wells
    井名目的层井段长度/m优良率,%合格率,%备注
    C13-x330井32616.646.5对比井
    C13-x332井35071.788.5应用井
    C13-x112井32069.696.0
    B17-x037井25256.686.0对比井
    B17-x292井26089.697.0应用井
    下载: 导出CSV 
    | 显示表格

    Fyp1井是大芦湖油田樊家区块的一口页岩油气重点勘探井,是一口水平井,设计井深5 364 m,采用三开井身结构。其中,目的层井段(3 300~5 364 m井段)采用密度1.50 kg/L的油基钻井液钻进,在固井作业中,为有效清除油膜及岩屑,保证固井作业安全,将多棱石英砂和加重剂进行复配,配制了密度1.65 kg/L的多棱石英砂冲洗液(漏斗黏度52 s,满足现场安全注入要求),注入体积20 m3。该井固井施工一切正常,声幅测井结果显示,目的层井段一界面固井质量优良率达92.0%,而该区块应用常规冲洗液油井的第一界面固井质量优良率仅43.0%,与之相比固井质量有了大幅提高。

    1)基于加强物理冲刷的原理,通过优选多棱石英砂及悬浮剂,配制了多棱石英砂冲洗液。室内试验表明,该冲洗液具有稳定性好、冲洗效率高和相容性好等优点。

    2)多棱石英砂冲洗液在4口井的应用效果表明,该冲洗液泵送性能良好,能够有效清洁井壁,改善固井第二界面胶结环境,固井质量均有明显的提高,具有较高的推广价值。

    3)多棱石英砂冲洗液既可用于水基钻井液又可用于油基钻井液,建议在页岩油气井固井中进行推广应用,以提高固井质量,满足大型压裂对水泥环胶结质量的要求。

  • 图  1   反相乳液型降阻剂SFFRE-1的结构

    Figure  1.   Structure of inverse emulsion friction reducer SFFR-1

    图  2   不同质量分数SFFRE-1溶液的黏度

    Figure  2.   Viscosity of SFFRE-1 solution with different mass fractions

    图  3   滑溜水–胶液一体化压裂液不同剪切速率下的降阻率

    Figure  3.   Friction reduction rate of the slick water and gel-liquid integrated fracturing fluid in different shear rates

    图  4   滑溜水–胶液一体化压裂液在160 ℃下的流变曲线

    Figure  4.   The rheological curve of the slick water and gel-liquidintegrated fracturing fluid at 160 ℃

    图  5   滑溜水–胶液一体化压裂液的携砂性能

    Figure  5.   Sand carrying capacity of the slick water and gel-liquid integrated fracturing fluid

    图  6   不同压裂液的累计滤失量与时间平方根的曲线

    Figure  6.   Curve of the filtration rate and square root of time with different fracturing fluids

    表  1   SFCU-1的基本性能

    Table  1   Basic properties of SFCU-1

    序号测试溶液表面张力/
    (mN·m−1
    界面张力/
    (mN·m−1
    降阻率,%
    1清水72.0025.00
    20.1% SFCU-122.771.23
    30.1% SFCU-1+
    0.1% SFFRE-1
    23.601.3280
    40.1% SFCU-1+
    0.1% SFFRE-1+
    0.3%黏土稳定剂
    23.801.5683
    下载: 导出CSV

    表  2   黏土稳定剂的基本性能

    Table  2   Basic properties of the clay stabilizer

    序号液体防膨率,%黏度/(mPa·s)
    10.3%黏土稳定剂166.3
    20.3%黏土稳定剂279.4
    30.3%黏土稳定剂383.6
    40.3%黏土稳定剂3+0.1%SFFRE-1+
    0.1%SFCU-1
    82.03.5
    50.3%黏土稳定剂3+0.3%SFFRE-1+
    0.1%SFCU-1
    83.613.5
    下载: 导出CSV

    表  3   滑溜水–胶液一体化压裂液破胶试验结果

    Table  3   Gel breaking experimental results of the slick waterand gel-liquid integrated fracturing fluids

    破胶剂及加量温度/
    破胶时间/min破胶液黏度/(mPa·s)残渣含量/(mg·L−1
    0.05%(NH42S2O89060352
    0.05%K2S2O860355
    0.05%NaBrO360352
    下载: 导出CSV

    表  4   不同压裂液破胶液伤害试验结果

    Table  4   Experimental results of gel breaker damage of different fracturing fluids

    岩心编号直径/cm长度/cm孔隙度,%渗透率/mD伤害率,%备注
    伤害前伤害后
    12.4845.1087.630.1280.05160.2胍胶压裂液
    22.4804.7667.090.1090.04261.5
    32.4925.5927.300.1090.09413.8一体化压裂液
    42.4845.2647.080.1080.09214.8
    下载: 导出CSV

    表  5   胜利油田高青、梁家楼区块一体化压裂液应用效果统计

    Table  5   Application effect statistics of the integrated fracturing fluids in Gaoqing and Liangjialou Blocks in Shengli Oilfield

    井号储层类型砂比,%降阻率,%
    C97X22致密砂岩4275
    C87-1致密砂岩4275
    L78X10致密砂岩4275
    L78X11致密砂岩4275
    L78X12致密砂岩4275
    G946X1致密砂岩4375
    L121X2页岩油4375
    L106X7页岩油4175
    下载: 导出CSV
  • [1] 贾金亚,魏娟明,贾文峰,等. 页岩气压裂用滑溜水胶液一体化稠化剂研究[J]. 应用化工,2019,48(6):1247–1250. doi: 10.3969/j.issn.1671-3206.2019.06.001

    JIA Jinya, WEI Juanming, JIA Wenfeng, et al. Research on the integrated thickener of slippery water glue for shale gas fracturing[J]. Applied Chemical Industry, 2019, 48(6): 1247–1250. doi: 10.3969/j.issn.1671-3206.2019.06.001

    [2] 范家伟,袁野,李绍华,等. 塔里木盆地深层致密油藏地质工程一体化模拟技术[J]. 断块油气田,2022,29(2):194–198.

    FAN Jiawei, YUAN Ye, LI Shaohua, et al. Geology-engineering integrated simulation technology of deep tight oil reservoir in Tarim Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 194–198.

    [3] 杨浩,李新发,陈鑫,等. 低渗透气藏水平井分段压裂分段优化方法研究[J]. 特种油气藏,2021,28(1):125–129.

    YANG Hao, LI Xinfa, CHEN Xin, et al. tudy on staged optimization method of staged fracturing for horizontal wells in low-permeability gas reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 125–129.

    [4] 张炜. 深部页岩压裂缝网体积模拟及应用[J]. 石油钻采工艺,2021,43(1):97–103.

    ZHANG Wei. Deep shale hydraulic fracture network volume model and its application[J]. Oil Drilling & Production Technology, 2021, 43(1): 97–103.

    [5] 张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15.

    ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15.

    [6] 慕立俊,吴顺林,徐创朝,等. 基于缝网扩展模拟的致密储层体积压裂水平井产能贡献分析[J]. 特种油气藏,2021,28(2):126–132.

    MU Lijun, WU Shunlin, XU Chuangchao, et al. Analysis on contribution to productivity of SRV-fractured horizontal wells in tight reservoirs based on simulation of fracture network propagation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 126–132.

    [7] 王波,王佳,罗兆,等. 水平井段内多簇清水体积压裂技术及现场试验[J]. 断块油气田,2021,28(3):408–413.

    WANG Bo, WANG Jia, LUO Zhao, et al. Multi-cluster clean water volume fracturing technology in horizontal well section and field test[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 408–413.

    [8] 魏娟明,刘建坤,杜凯,等. 反相乳液型减阻剂及滑溜水体系的研发与应用[J]. 石油钻探技术,2015,43(1):27–32.

    WEI Juanming, LIU Jiankun, DU Kai, et al. Development and application of inverse emulsion drag reducer and slippery water system[J]. Petroleum Drilling Techniques, 2015, 43(1): 27–32.

    [9] 陈作,曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术,2016,44(1):6–11.

    CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016, 44(1): 6–11.

    [10] 陈鹏飞,唐永帆,刘友权,等. 页岩气藏滑溜水压裂用降阻剂性能影响因素研究[J]. 石油与天然气化工,2014,43(4):405–408. doi: 10.3969/j.issn.1007-3426.2014.04.013

    CHEN Pengfei, TANG Yongfan, LIU Youquan, et al. Influencing factors of friction reducer in shale slickwater fracturing[J]. Chemical Engineering of Oil and Gas, 2014, 43(4): 405–408. doi: 10.3969/j.issn.1007-3426.2014.04.013

    [11] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术,2018,46(1):1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.

    [12] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001

    [13] 王丽伟,高莹,杨战伟,等. 深层油气用加重滑溜水压裂液体系[J]. 钻井液与完井液,2020,37(6):794–797.

    WANG Liwei,YANG Jingxu, GAO Ying,et al. Study on weighted slick water fracturing fluid for deep buried oil and gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 794–797.

    [14] 李平,樊平天,郝世彦,等. 大液量大排量低砂比滑溜水分段压裂工艺应用实践[J]. 石油钻采工艺,2019,41(4):534–540.

    LI Ping, FAN Pingtian, HAO Shiyan, et al. Application practice of the slick-water staged fracturing of massive fluid, high displacement and low sand concentration[J]. Oil Drilling & Production Technology, 2019, 41(4): 534–540.

    [15] 李远照,李婷,王犁,等. 基于刺激响应策略的可控滑溜水研究[J]. 钻井液与完井液,2020,37(6):784–788.

    LI Yuanzhao, LI Ting, WANG Li, et al. tudy on controllable slick water based on stimulus response strategy[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 784–788.

    [16]

    CONSTIEN V G, BRANNON H D. Method of hydrating oil based fracturing concentrate and continuous fracturing process using same: US4828034[P]. 1989 − 05 − 09.

    [17]

    AFTEN C W. Study of friction reducers for recycled stimulation fluids in environmentally sensitive regions[R]. SPE 138984, 2010.

    [18] 蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业,2017,37(1):90–96. doi: 10.3787/j.issn.1000-0976.2017.01.011

    JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1): 90–96. doi: 10.3787/j.issn.1000-0976.2017.01.011

    [19] 田福春,刘学伟,张胜传,等. 大港油田陆相页岩油滑溜水连续加砂压裂技术[J]. 石油钻探技术,2021,49(4):118–124. doi: 10.11911/syztjs.2021021

    TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, et al. Continuous sand fracturing technology with slick water for continental shale oil in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 118–124. doi: 10.11911/syztjs.2021021

    [20] 杜凯,黄凤兴,伊卓,等. 页岩气滑溜水压裂用降阻剂研究与应用进展[J]. 中国科学:化学,2014,44(11):1696–1704. doi: 10.1360/N032014-00149

    DU Kai, HUANG Fengxing, YI Zhuo, et al. Recent advances on friction reducer for slickwater fracturing of shale gas reservoirs[J]. Scientia Sinica Chimica, 2014, 44(11): 1696–1704. doi: 10.1360/N032014-00149

    [21] 张松柏. 苏里格气田压裂液配方优化研究[D]. 青岛: 中国石油大学(华东), 2018.

    ZHANG Songbai. Optimization of fracturing fluid formulation in Sulige Gas Field[D]. Qingdao: China University of Petroleum (East China), 2018.

    [22] 杜涛,姚奕明,蒋廷学,等. 页岩气压裂用线性胶压裂液性能研究与现场应用[J]. 化学世界,2015,56(11):666–670.

    DU Tao, YAO Yiming, JIANG Tingxue, et al. Study on properties of linear gel fracturing fluid and its field application for shale gas well[J]. Chemical World, 2015, 56(11): 666–670.

    [23] 魏向博,李小瑞,王磊,等. 疏水缔合压裂液用稠化剂HAP-1 的制备及性能评价[J]. 现代化工,2016,36(10):104–108.

    WEI Xiangbo, LI Xiaorui, WANG Lei, et al. Preparation and performance evaluation of thickener HAP-1 for hydrophobically associating fracturing fluids[J]. Modern Chemical Industry, 2016, 36(10): 104–108.

    [24] 李延芬,朱荣娇,孙永菊,等. 两性疏水缔合聚丙烯酰胺的合成及性能[J]. 精细化工,2012,29(5):499–504,516.

    LI Yanfen, ZHU Rongjiao, SUN Yongju, et al. Synthesis and performance evaluation of amphoteric hydrophobic association polyacrylamide[J]. Fine Chemicals, 2012, 29(5): 499–504,516.

    [25] 赵金洲,王松,李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业,2012,32(4):46–49. doi: 10.3787/j.issn.1000-0976.2012.04.011

    ZHAO Jinzhou, WANG Song, LI Yongming. Difficulties and technical key points of fracturing reformation of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(4): 46–49. doi: 10.3787/j.issn.1000-0976.2012.04.011

    [26] 蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术,2011,39(3):36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006

    JIANG Tingxue, JIA Changgui, WANG Haitao, et al. Study on network fracturing design method in shale gas[J]. Petroleum Drilling Techniques, 2011, 39(3): 36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006

    [27] 贾长贵. 页岩气高效变黏滑溜水压裂液[J]. 油气田地面工程,2013,32(11):1–2. doi: 10.3969/j.issn.1006-6896.2013.11.001

    JIA Changgui. High-efficiency variable viscous slick water fracturing fluid for shale gas[J]. Oil-Gasfield Surface Engineering, 2013, 32(11): 1–2. doi: 10.3969/j.issn.1006-6896.2013.11.001

    [28]

    YANG Bo, ZHAO Jinzhou, MAO Jincheng, et al. Review of friction reducers used in slickwater fracturing fluids for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 302–313.

    [29]

    HSIN C C, THOMAS N, YE X, et al. A friction reducer: self-cleaning to enhance conductivity for hydraulic fracturing[R]. SPE 170602, 2014.

    [30] 曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073

  • 期刊类型引用(1)

    1. 刘昊. 固井清洗剂DQQX-2及其冲洗液体系的研制与应用. 钻井液与完井液. 2024(04): 531-536 . 百度学术

    其他类型引用(0)

图(6)  /  表(5)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  284
  • PDF下载量:  89
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-12-19
  • 修回日期:  2022-03-31
  • 网络出版日期:  2022-05-15
  • 刊出日期:  2022-06-08

目录

/

返回文章
返回