砾石充填介质复合堵塞对天然气水合物储层产能的影响规律研究

赛福拉·地力木拉提, 董长银, 李彦龙, 陈强, 刘晨枫, 王浩宇

赛福拉·地力木拉提,董长银,李彦龙,等. 砾石充填介质复合堵塞对天然气水合物储层产能的影响规律研究[J]. 石油钻探技术,2022, 50(5):94-101. DOI: 10.11911/syztjs.2022055
引用本文: 赛福拉·地力木拉提,董长银,李彦龙,等. 砾石充填介质复合堵塞对天然气水合物储层产能的影响规律研究[J]. 石油钻探技术,2022, 50(5):94-101. DOI: 10.11911/syztjs.2022055
SAIFULLA Dilmurat, DONG Changyin, LI Yanlong, et al. Influence law of hybrid plugging of gravel-packed media on productivity in natural gas hydrate reservoirs [J]. Petroleum Drilling Techniques,2022, 50(5):94-101. DOI: 10.11911/syztjs.2022055
Citation: SAIFULLA Dilmurat, DONG Changyin, LI Yanlong, et al. Influence law of hybrid plugging of gravel-packed media on productivity in natural gas hydrate reservoirs [J]. Petroleum Drilling Techniques,2022, 50(5):94-101. DOI: 10.11911/syztjs.2022055

砾石充填介质复合堵塞对天然气水合物储层产能的影响规律研究

基金项目: 国家重点研发计划项目“水合物开采过程气-液-固多相流动规律与泥砂控制机理”(编号:2017YFC0307304);国家自然科学基金项目“弱胶结储层微观出砂机理与颗粒级尺度出砂过程模拟研究”(编号:51774307);中国石油科技重大专项“海域天然气水合物试采工程基础及关键技术”(编号:ZD2019-184)联合资助
详细信息
    作者简介:

    赛福拉·地力木拉提(1994—),男,新疆乌鲁木齐人,2019年毕业于中国石油大学(华东)石油工程专业,油气田开发工程专业在读硕士研究生,主要从事油气田开发防砂完井技术研究工作。E-mail: s19020131@s.upc.edu.cn

  • 中图分类号: TE357.46+2

Influence Law of Hybrid Plugging of Gravel-Packed Media on Productivityin Natural Gas Hydrate Reservoirs

  • 摘要:

    砾石充填层堵塞是影响天然气水合物储层砾石充填防砂井产能优化的关键因素。在考虑泥质粉砂与二次生成水合物对砾石充填层复合堵塞情形的基础上,针对人造陶粒与石英砂充填介质,分别开展了泥质粉砂和水合物二次生成堵塞充填层的模拟试验,系统分析了堵塞过程。基于复合堵塞充填层机理及渗透率变化规律,构建了天然气水合物砾石充填防砂井砾石充填层堵塞后的产能预测模型并进行了案例分析。研究结果表明,在泥质粉砂和二次生成水合物堵塞条件下,充填层渗透率的降幅分别达93%与98%;复合堵塞造成充填层渗透率降低对产能的影响显著,堵塞后防砂井产能比的降幅达97%。大粒径砾石充填虽然能缓解产能受损,但效果不明显。研究认为,预防复合堵塞的关键是优化生产制度,避免水合物二次生成。

    Abstract:

    The influence brought by the plugging of gravel-packed media on productivity is the key to optimizing the productivity of gravel-packed sand control wells for natural gas hydrate production. Primary consideration was given to the hybrid plugging of gravel-packed media by argillaceous silt and secondary hydrates. For the packing media of artificial ceramsite and quartz sand, medium plugging by argillaceous silt and medium plugging caused by secondary hydrate formation were respectively experimentally simulated, and the plugging processes were systematically analyzed. A productivity prediction model for plugged gravel-packed sand control wells for natural gas hydrate production was built according to the hybrid medium plugging mechanism and the permeability variation law, and a case study was carried out with the proposed model. The results showed that under the conditions of plugging by argillaceous silt and secondary hydrate formation, the permeability of the packing layer decreased by 93% and 98%, respectively. The decrease in the permeability of the packing layer caused by hybrid plugging had a significant impact on productivity, and the productivity ratio of the sand control wells after plugging dropped by 97%. Although packing with gravels of large particle sizes can alleviate the loss of productivity, the effect is insignificant. Instead, optimizing the production system to avoid secondary hydrate formation is the key to preventing hybrid plugging.

  • 图  1   充填介质挡砂模拟试验系统流程

    Figure  1.   Flow chart of sand retention simulation apparatus for retention media

    图  2   不同介质充填层渗透率比、压差比和流量比随时间的变化

    Figure  2.   Variation of permeability ratio, pressure difference ratio, and flow ratio of different packing layers with time

    图  3   不同粒径陶粒和石英砂充填层的最终堵塞程度

    Figure  3.   Ultimate plugging degree of layers packed by ceramsite and quartz sand with different particle sizes

    图  4   水合物生成堵塞充填介质模拟试验装置

    Figure  4.   Simulation test device for plugging of packing media caused by hydrate formation

    图  5   不同介质充填层压差比和流量比随时间的变化

    Figure  5.   Variation of pressure difference ratio and flow ratio of different packing layers with time

    图  6   不同介质充填层渗透率比和温度随时间的变化

    Figure  6.   Variation of permeability ratio and temperature of different packing layers with time

    图  7   不同粒径陶粒和石英砂充填层堵塞程度的平均值

    Figure  7.   Average plugging degree of layers packed by ceramsite and quartz sand with different particle sizes

    图  8   水合物–泥质粉砂复合堵塞充填层机理

    Figure  8.   Hybrid plugging mechanism of hydrate and argillaceous silt

    图  9   砂堵不同阶段发生冰堵时对陶粒充填层渗透率的影响规律

    Figure  9.   Influence law of ice plugging occurring at different stages of silt plugging on permeability of ceramsite packing layers

    图  10   不同粒径陶粒充填层堵塞产能比与渗透率的关系

    Figure  10.   Relationship between productivity ratio and permeabilityof plugging layers packed by ceramsite with different particle sizes

    图  11   不同粒径陶粒充填层不同复合堵塞情形对产能的影响规律

    Figure  11.   Influence law of different hybrid plugging situations of ceramsite packing layers with different particle sizes on productivity

  • [1] 赵克斌,孙长青,吴传芝. 天然气水合物开发技术研究进展[J]. 石油钻采工艺,2021,43(1):7–14.

    ZHAO Kebin, SUN Changqing, WU Chuanzhi. Research progress of natural gas hydrate development technologies[J]. Oil Drilling & Production Technology, 2021, 43(1): 7–14.

    [2] 光新军,王敏生. 海洋天然气水合物试采关键技术[J]. 石油钻探技术,2016,44(5):45–51. doi: 10.11911/syztjs.201605008

    GUANG Xinjun, WANG Minsheng. Key production test technologies for offshore natural gas hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45–51. doi: 10.11911/syztjs.201605008

    [3] 叶建良,秦绪文,谢文卫,等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质,2020,47(3):557–568. doi: 10.12029/gc20200301

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557–568. doi: 10.12029/gc20200301

    [4] 李彦龙,刘乐乐,刘昌岭,等. 天然气水合物开采过程中的出砂与防砂问题[J]. 海洋地质前沿,2016,32(7):36–43.

    LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: a review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36–43.

    [5] 李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi: 10.11911/syztjs.2020095

    LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi: 10.11911/syztjs.2020095

    [6] 董长银. 油气井防砂技术[M]. 北京: 中国石化出版社, 2009: 29−40.

    DONG Changyin. Sand control technology for oil & gas wells[M]. Beijing: China Petrochemical Press, 2009: 29−40.

    [7]

    LIU Zheyuan, YANG Mingjun, LIU Yu, et al. Analyzing the Joule-Thomson effect on wellbore in methane hydrate depressurization with different back pressure[J]. Energy Procedia, 2019, 158: 5390–5395. doi: 10.1016/j.egypro.2019.01.625

    [8]

    CHONG Zhengrong, YIN Zhenyuan, TAN J H C, et al. Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach[J]. Applied Energy, 2017, 204: 1513–1525. doi: 10.1016/j.apenergy.2017.04.031

    [9] 董长银,钟奕昕,武延鑫,等. 水合物储层高泥质细粉砂筛管挡砂机制及控砂可行性评价试验[J]. 中国石油大学学报(自然科学版),2018,42(6):79–87.

    DONG Changyin, ZHONG Yixin, WU Yanxin, et al. Experimental study on sand retention mechanisms and feasibility evaluation of sand control for gas hydrate reservoirs with highly clayey fine sands[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6): 79–87.

    [10] 董长银,周博,宋洋,等. 天然气水合物储层防砂介质挡砂模拟试验与评价方法[J]. 中国石油大学学报(自然科学版),2020,44(5):79–88.

    DONG Changyin, ZHOU Bo, SONG Yang, et al. Sand-retaining simulation experiment of screen media for formation sand in natural gas hydrate reservoirs and evaluation method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(5): 79–88.

    [11]

    DONG Changyin, WANG Lizhi, ZHOU Yugang, et al. Microcosmic retaining mechanism and behavior of screen media with highly argillaceous fine sand from natural gas hydrate reservoir[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103618. doi: 10.1016/j.jngse.2020.103618

    [12] 董长银,宋洋,周玉刚,等. 天然气水合物储层泥质细粉砂挡砂介质堵塞规律与微观挡砂机制[J]. 石油学报,2020,41(10):1248–1258. doi: 10.7623/syxb202010009

    DONG Changyin, SONG Yang, ZHOU Yugang, et al. Plugging law and microscopic sand retention mechanism of sand retaining medium of argillaceous fine silt sand in gas hydrate reservoirs[J]. Acta Petrolei Sinica, 2020, 41(10): 1248–1258. doi: 10.7623/syxb202010009

    [13]

    LI Yanlong, NING Fulong, WU Nengyou, et al. Protocol for sand control screen design of production wells for clayey silt hydrate reservoirs: a case study[J]. Energy Science & Engineering, 2020, 8(5): 1438–1449.

    [14] 余莉,何计彬,叶成明,等. 海域天然气水合物泥质粉砂型储层防砂砾石粒径尺寸选择[J]. 石油钻采工艺,2019,41(5):670–675.

    YU Li, HE Jibin, YE Chengming, et al. Size selection of the sand-control gravel particle in the argillaceous siltstone reservoirs of natural gas hydrate in sea areas[J]. Oil Drilling & Production Technology, 2019, 41(5): 670–675.

    [15]

    LI Yanlong, WU Nengyou, GAO Deli, et al. Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production[J]. Energy, 2021, 219: 119585. doi: 10.1016/j.energy.2020.119585

    [16]

    LI Yanlong, WU Nengyou, NING Fulong, et al. Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation[J]. Energy, 2020, 206: 118030. doi: 10.1016/j.energy.2020.118030

    [17] 宋震,青显林,张运祥,等. 基于水平井射孔的天然气水合物降压抽采工艺[J]. 断块油气田,2020,27(6):719–724.

    SONG Zhen, QING Xianlin, ZHANG Yunxiang, et al. Depressurization extraction technology of natural gas hydrate based on horizontal well perforation[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 719–724.

    [18] 董胜伟,王子健,曹飞,等. 深水浅部水合物储层水平井井筒温度计算模型[J]. 特种油气藏,2020,27(5):157–161. doi: 10.3969/j.issn.1006-6535.2020.05.024

    DONG Shengwei, WANG Zijian, CAO Fei, et al. Wellbore temperature calculation model for horizontal wells in shallow hydrate reservoirs in deep water[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 157–161. doi: 10.3969/j.issn.1006-6535.2020.05.024

    [19]

    DING Jiping, CHENG Yuanfang, YAN Chuanliang, et al. Experimental study of sand control in a natural gas hydrate reservoir in the South China Sea[J]. International Journal of Hydrogen Energy, 2019, 44(42): 23639–23648. doi: 10.1016/j.ijhydene.2019.07.090

    [20] 王山榕. 多孔介质内水合物成核诱导时间与生长动力学研究[D]. 大连: 大连理工大学, 2018.

    WANG Shanrong. Studies on nucleation induction time and growth kinetics of hydrate formation in porous media[D]. Dalian: Dalian University of Technology, 2018.

    [21]

    SONG Yongchen, WANG Pengfei, JIANG Lanlan, et al. Methane hydrate formation/reformation in three experimental modes: a preliminary investigation of blockage prevention during exploitation[J]. Journal of Natural Gas Science and Engineering, 2015, 27(part 3): 1814−1820.

    [22] 胡高伟,李承峰,业渝光,等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报,2014,57(5):1675–1682. doi: 10.6038/cjg20140530

    HU Gaowei, LI Chengfeng, YE Yuguang, et al. Observation of gas hydrate distribution in sediment pore space[J]. Chinese Journal of Geophysics, 2014, 57(5): 1675–1682. doi: 10.6038/cjg20140530

    [23] 程林松,李春兰,马志远. 气藏多分支水平井产能的计算方法[J]. 石油学报,1998,19(4):69–72. doi: 10.3321/j.issn:0253-2697.1998.04.012

    CHENG Linsong, LI Chunlan, MA Zhiyuan. A method for calculating the productivity of multiwellbore horizontal wells in gas reservoir[J]. Acta Petrolei Sinica, 1998, 19(4): 69–72. doi: 10.3321/j.issn:0253-2697.1998.04.012

    [24]

    JOSHI S D. Horizontal well technology: Chapter 3[M]. Tulsa: PennWell Publishing Company, 1991: 73−94.

    [25] 董长银,武龙,汪天游,等. 气井水平井防砂产能预测与评价模型[J]. 石油钻探技术,2009,37(5):20–25. doi: 10.3969/j.issn.1001-0890.2009.05.005

    DONG Changyin, WU Long, WANG Tianyou, et al. An integrated model for productivity prediction and evaluation of sand control horizontal gas wells[J]. Petroleum Drilling Techniques, 2009, 37(5): 20–25. doi: 10.3969/j.issn.1001-0890.2009.05.005

  • 期刊类型引用(36)

    1. 翁定为,孙强,梁宏波,雷群,管保山,慕立俊,刘汉斌,张绍林,柴麟,黄瑞. 低渗透老油田柔性侧钻水平井挖潜技术. 石油勘探与开发. 2025(01): 194-203 . 百度学术
    2. 李瑞,金丽红,夏彬伟,葛兆龙. 地面井分层卸压的煤系气合采原理及方式探讨. 煤田地质与勘探. 2024(02): 171-179 . 百度学术
    3. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 . 百度学术
    4. 戴佳成,李根生,孙耀耀,李敬彬,王天宇. 基于水平井的径向井开采页岩油产能模拟和参数分析. 石油科学通报. 2024(04): 604-616 . 百度学术
    5. 李欢,黄中伟,李敬彬,程康,李文彬,胡静茹. 旋转磨料射流破碎碳酸盐岩参数影响规律及机理研究. 石油科学通报. 2024(06): 991-1004 . 百度学术
    6. 王斌,黄中伟,杨睿月,李学臣,李敬彬,陈健翔,秦小舟. 煤矿巷道磨料射流泄压增透新方法初探. 石油机械. 2023(01): 40-46+77 . 百度学术
    7. 姚宁平,王力,张金宝,豆旭谦,魏宏超. 煤矿井下连续管钻进管柱分析及射流钻进实验. 煤田地质与勘探. 2023(01): 298-308 . 百度学术
    8. 周蒙蒙,李欢,李根生,黄中伟,李敬彬,程康,胡静茹. 旋转磨料射流钻孔储层适应性研究. 流体机械. 2023(01): 1-7 . 百度学术
    9. 周秋成,罗宁,李健敏,王秀伟,刘鑫,陈开研,张力凡. 旋转磨料射流喷嘴叶轮参数优化设计. 流体机械. 2023(02): 33-40 . 百度学术
    10. 刘勇,代硕,魏建平,郭鑫辉,苑永旺. 自进式旋转钻头钻孔修复运动方程及关键参数研究. 河南理工大学学报(自然科学版). 2023(03): 1-9 . 百度学术
    11. 赵文智,赵阳升,李根生,胡素云,朱如凯,卞从胜,刘伟,李永新,于晟,任建国. 陆相中低熟页岩油富集与原位转化科学问题及关键技术. 中国科学基金. 2023(02): 276-284 . 百度学术
    12. 戴文潮. 预置管酸液射流钻进数值模拟与实验. 石油钻采工艺. 2023(01): 18-24 . 百度学术
    13. 周福建,李根生,刘皓,刘雄飞,田守嶒,梁天博. 致密油气藏精准压裂-提高采收率一体化技术发展现状及建议. 前瞻科技. 2023(02): 75-88 . 百度学术
    14. 李敬彬,程康,胡静茹,黄中伟,王海柱. 水力喷射径向水平井回灌增注特性可视化试验研究. 流体机械. 2023(11): 1-8 . 百度学术
    15. 陈立强,张启龙,吴洪波,李华朋,王赞,李佳旭. 水力喷射体积压裂裂缝间距优化方法研究. 石油化工应用. 2022(01): 31-36 . 百度学术
    16. 张涛,于怀彬,黄欣,李玉梅,文涛,王宁. 径向水平井自进式多孔射流钻头流场特性仿真. 石油机械. 2022(07): 124-129 . 百度学术
    17. 武晓光,黄中伟,李根生,史怀忠,刘寿军,刘鑫. “连续管+柔性钻具”超短半径水平井钻井技术研究与现场试验. 石油钻探技术. 2022(06): 56-63 . 本站查看
    18. 巴全斌,刘延保,何立鹏,申凯,熊伟,赵旭生. 水力喷射外旋式钻进喷头关键参数及成孔效果试验研究. 中国矿业大学学报. 2021(06): 1087-1095 . 百度学术
    19. 马国锐,李敬彬,李欢,张杰,常文天. 旋转磨料射流破碎碳酸盐岩成孔特性研究. 流体机械. 2021(11): 12-17+53 . 百度学术
    20. 王文,刘家屹,陈捷,黄兵. 金华—秋林区块沙溪庙组致密砂岩钻井提速技术. 钻采工艺. 2021(05): 34-38 . 百度学术
    21. 巴全斌. 瓦斯抽采钻孔解堵修复装备的研制与应用. 矿业安全与环保. 2021(06): 72-76 . 百度学术
    22. 贾建超,廖华林,于怀彬,张涛,李玉梅. 水力喷射径向钻孔器的流场特性. 断块油气田. 2020(01): 122-125 . 百度学术
    23. 乔晋,李瑞,王森,刘彦锋,高超. 西山地区煤层气径向水力钻孔技术应用及效果. 煤炭工程. 2020(06): 86-90 . 百度学术
    24. 梁春苗,姚宁平,姚亚峰,张金宝,沙翠翠,李坤. 自进式动平衡围压水射流钻孔试验装置设计与试验. 煤炭学报. 2020(10): 3533-3540 . 百度学术
    25. 范耀,张群. 高压水射流极小半径钻井技术研究现状与展望. 煤田地质与勘探. 2020(05): 232-239 . 百度学术
    26. 杜志强,吴艳. 高压水射流径向钻井技术在王坡矿区的应用. 内蒙古煤炭经济. 2020(18): 145-147 . 百度学术
    27. 李玉梅,张涛,于怀彬,苏中,于丽维,郑伟. 水力喷射钻孔器径向破岩特性分析. 石油机械. 2019(04): 24-30 . 百度学术
    28. 张启龙,王斌,田守嶒,高斌,李进. 渤海中深层探井径向射流技术可行性研究. 石油机械. 2019(05): 17-23+30 . 百度学术
    29. 谢淮北,王岩,崔松,袁帅伟. 热力辅助对磨料射流切割45钢表面质量的影响. 制造业自动化. 2019(08): 16-18+57 . 百度学术
    30. 潘荣山,朱健军,杨金龙,张春祥. 徐深1-平3井钻井设计和钻井施工效果分析. 采油工程. 2019(04): 59-63+85 . 百度学术
    31. 李雷,王方祥,李天阳. 径向水平井多孔自旋射流喷嘴设计及应用. 断块油气田. 2018(02): 244-248 . 百度学术
    32. 胡宝玉. 径向射流技术对断层产状探测定位的应用研究. 煤田地质与勘探. 2018(04): 103-107 . 百度学术
    33. 刘再斌. 浅埋灰岩含水层互嵌式射流改造方法研究. 煤炭技术. 2018(06): 46-48 . 百度学术
    34. 杨刚,孟尚志,李斌,李孝勇,张林强,马腾飞,陈小波. 深部煤层气T型井钻井技术. 煤炭科学技术. 2018(06): 189-194 . 百度学术
    35. 毕刚,李根生,屈展,黄中伟,高辉,窦亮彬,赵凯. 水力喷射径向水平井钻井水力参数计算及优选方法. 西安石油大学学报(自然科学版). 2018(05): 76-82 . 百度学术
    36. 谢玉洪. 南海西部低渗油气藏勘探开发探索与实践. 中国海上油气. 2018(06): 80-85 . 百度学术

    其他类型引用(24)

图(11)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  95
  • PDF下载量:  27
  • 被引次数: 60
出版历程
  • 收稿日期:  2021-08-01
  • 修回日期:  2022-07-31
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回