Research on a Shock Wave Device with Pulsed Discharge for Shale Gas Stimulation
-
摘要:
为进一步推进脉冲放电冲击波技术在页岩气井增产中的应用,研制了可用于页岩气井井下作业的脉冲放电冲击波装置。该装置包括位于地面的电源系统和位于井下的储能、放电系统,其中井下部分封装在外径为102.0 mm的不锈钢外筒内,以保证有较好的绝缘性能和机械强度。该装置的设计最高电压和最大储能分别为10 kV和5 kJ,单次下井重复放电4 000次以上。根据现场特点和工程需求,对该装置的储能方式、负载电极、高压电容器等进行了研究设计,在地面进行了解堵除垢和岩样致裂调试试验,并在油井中开展了井下试验。地面调试试验发现,脉冲放电冲击波装置工作稳定性好,具有解堵疏通、致裂岩石的效果;井下试验结果表明,产液量和产油量相比施工前分别提高227%和197%,取得了较好的增产效果。研究认为,该装置工作稳定性好,在油井中具有很好的解堵疏通、致裂岩石的效果,也具备应用于页岩气井进行增产的可行性,但在页岩气井中具体效果如何,还有待于进一步研究。
Abstract:In order to further promote the application of pulsed discharge shock wave technology in production stimulation of shale gas wells, a shock wave device with pulsed discharge that could be used for downhole operations in shale gas wells was designed and developed. The device includes a ground power system and downhole energy storage and discharge systems. For favorable insulation performance and mechanical strength, the downhole part was enclosed in a stainless steel outer cylinder with an diameter of 102.0 mm. With a design maximum voltage of 10 kV and a maximum energy storage of 5 kJ, the device can repeatedly discharge more than 4000 times in a single downhole trip. Further, its energy storage method, load electrodes, and high-voltage capacitor were designed according to field characteristics and engineering requirements. Unblocking and rock sample fracturing experiments were carried out on the ground, and a downhole test was conducted in a oil well. Ground debugging experiments showed that the pulsed discharge shock wave device possessed high working stability, with effects of unblocking and rock fracturing. The downhole test revealed that liquid and oil production increased by 227% and 197%, respectively. Compared with those before construction, a favorable effect of production increase was achieved. Studies indicated that the device had high working stability and were able to achieve the favorable effects of unblocking and rock fracturing in oil wells. Further, it is also feasible to be applied to shale gas wells for stimulation, although the specific effect in shale gas wells needs further research.
-
Keywords:
- shale gas /
- stimulation /
- pulsed discharge /
- shock wave /
- device /
- unblocking /
- fracturing
-
-
-
[1] 晁明伟,张立军,王旱祥,等. 中国页岩气产业的发展现状及趋势[J]. 电力与能源进展,2014,2(3):33–39. doi: 10.12677/AEPE.2014.23005 CHAO Mingwei, ZHANG Lijun, WANG Hanxiang, et al. The development status and trends of China shale gas industry[J]. Advances in Energy and Power Engineering, 2014, 2(3): 33–39. doi: 10.12677/AEPE.2014.23005
[2] 张东晓,杨婷云. 页岩气开发综述[J]. 石油学报,2013,34(4):792–801. doi: 10.7623/syxb201304023 ZHANG Dongxiao, YANG Tingyun. An overview of shale-gas production[J]. Acta Petrolei Sinica, 2013, 34(4): 792–801. doi: 10.7623/syxb201304023
[3] 袁光杰,付利,王元,等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1–12. doi: 10.11911/syztjs.2022002 YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1): 1–12. doi: 10.11911/syztjs.2022002
[4] 何方雨. 页岩气钻完井技术现状与难点探究[J]. 石化技术,2021,28(3):57–58. HE Fangyu. Shale gas drilling and completion technology status and difficulties[J]. Petrochemical Industry Technology, 2021, 28(3): 57–58.
[5] 张慧,李军,张小军,等. 页岩气井压裂液进入断层的途径及防控措施[J]. 断块油气田,2021,28(6):750–754. ZHANG Hui, LI Jun, ZHANG Xiaojun, et al. Leakage path of fracturing fluid into faults and prevention and control measures in shale gas wells[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 750–754.
[6] 刘学伟. 页岩储层水力压裂支撑裂缝导流能力影响因素[J]. 断块油气田,2020,27(3):394–398. LIU Xuewei. Influencing factors of hydraulic propped fracture conductivity in shale reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 394–398.
[7] 张然, 李根生, 杨林, 等. 页岩气增产技术现状及前景展望[J]. 石油机械, 2011, 39(增刊1): 117-120. ZHANG Ran, LI Gensheng, YANG Lin, et al. Current status and prospects of shale gas production increasing technology[J]. China Petroleum Machinery, 2011, 39(supplement 1): 117-120.
[8] 叶静,胡永全,叶生林,等. 页岩气藏水力压裂技术进展[J]. 天然气勘探与开发,2012,35(4):64–68. doi: 10.3969/j.issn.1673-3177.2012.04.015 YE Jing, HU Yongquan, YE Shenglin, et al. Technical progress of hydraulic fracturing in shale-gas reservoirs[J]. Natural Gas Exploration and Development, 2012, 35(4): 64–68. doi: 10.3969/j.issn.1673-3177.2012.04.015
[9] 赵金洲,任岚,沈骋,等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业,2018,38(3):1–14. doi: 10.3787/j.issn.1000-0976.2018.03.001 ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1–14. doi: 10.3787/j.issn.1000-0976.2018.03.001
[10] 卢渊, 李沁, 张浩, 等. 油气储层保护与改造技术[M]. 北京: 科学出版社, 2017: 185-216. LU Yuan, LI Qin, ZHANG Hao, et al. Oil and gas reservoir protection and reconstruction technology[M]. Beijing: Science Press, 2017: 185 − 216.
[11] VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334–8348.
[12] 张永民,邱爱慈,周海滨,等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术,2016,42(4):1009–1017. ZHANG Yongmin, QIU Aici, ZHOU Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009–1017.
[13] 王仲茂. 振动采油技术[M]. 北京: 石油工业出版社, 2000: 123-133. WANG Zhongmao. Vibration oil recovery technology[M]. Beijing: Petroleum Industry Press, 2000: 123 − 133.
[14] 屈丹安. DM-2型电脉冲解堵设备研究[D]. 北京: 中国地质大学(北京), 2002. QU Dan’an. Research on the DM-2 electric pulse equipment[D]. Beijing: China University of Geosciences(Beijing), 2002.
[15] 秦琼. 高压电脉冲解堵技术研究[D]. 西安: 西安石油大学, 2017. QIN Qiong. Research on high voltage impulse interception technology[D]. Xi’an: Xi’an Shiyou University, 2017.
[16] 张永民,邱爱慈,秦勇. 可控冲击波增透松软煤层的工程实践[J]. 山西焦煤科技,2017,41(8):116–121. ZHANG Yongmin, QIU Aici, QIN Yong. Engineering practice on controllable shock wave reinforcement on soft coal seam[J]. Shanxi Coking Coal Science & Technology, 2017, 41(8): 116–121.
[17] 付海峰,张永民,王欣,等. 基于脉冲致裂储层的改造新技术研究[J]. 岩石力学与工程学报,2017,36(增刊 2):4008–4017. FU Haifeng, ZHANG Yongmin, WANG Xin, et al. New stimulation technology research based on impulse fracturing reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(supplement 2): 4008–4017.
[18] 孙鹞鸿,孙广生,严萍,等. 高压电脉冲采油技术发展[J]. 高电压技术,2002,28(1):41–42. doi: 10.3969/j.issn.1003-6520.2002.01.020 SUN Yaohong, SUN Guangsheng, YAN Ping, et al. The development of the electric pulse oil-mining technology[J]. High Voltage Engineering, 2002, 28(1): 41–42. doi: 10.3969/j.issn.1003-6520.2002.01.020
[19] 付荣耀,孙鹞鸿,徐旭哲,等. 静水压力对岩石在等离子体冲击下压裂效果的影响[J]. 爆炸与冲击,2018,38(5):1051–1056. doi: 10.11883/bzycj-2017-0057 FU Rongyao, SUN Yaohong, XU Xuzhe, et al. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact[J]. Explosion and Shock Waves, 2018, 38(5): 1051–1056. doi: 10.11883/bzycj-2017-0057
[20] 韩波,王新新,郭志刚,等. 脉冲大电流放电技术在疏通油井上的应用[J]. 电工电能新技术,1998,17(1):36–40. HAN Bo, WANG Xinxin, GUO Zhigang, et al. Applications of impulse discharge with high current technique on oil well plug releasing[J]. Advanced Technology of Electrical Engineering and Energy, 1998, 17(1): 36–40.
[21] 喻越,朱鑫磊,黄昆,等. 应用于石油解堵增产的水中脉冲放电特性实验研究[J]. 高电压技术,2020,46(8):2951–2959. YU Yue, ZHU Xinlei, HUANG Kun, et al. Experimental study on pulse discharge characteristics in water applied to oil plugging and increasing production[J]. High Voltage Engineering, 2020, 46(8): 2951–2959.
[22] 刘毅,李志远,李显东,等. 水中脉冲激波对模拟岩层破碎试验[J]. 电工技术学报,2016,31(24):71–78. LIU Yi, LI Zhiyuan, LI Xiandong, et al. Experiments on the fracture of simulated stratum by underwater pulsed discharge shock waves[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 71–78.
[23] 赵勇,刘毅,任益佳,等. 水中大电流脉冲放电的激波传播特性[J]. 高电压技术,2021,47(3):876–884. ZHAO Yong, LIU Yi, REN Yijia, et al. Shock wave propagation characteristics of pulsed high-current discharge in water[J]. High Voltage Engineering, 2021, 47(3): 876–884.
[24] 曹玉峰,张克茹,曹立志,等. 低频脉冲技术提高页岩气产量的技术机理研究[J]. 黑龙江科技信息,2017(14):98–99. CAO Yufeng, ZHANG Keru, CAO Lizhi, et al. Research on the technical mechanism of low-frequency pulse technology to increase shale gas production[J]. Heilongjiang Science and Technology Information, 2017(14): 98–99.
[25] 付荣耀,孙鹞鸿,樊爱龙,等. 高压电脉冲在页岩气开采中的压裂实验研究[J]. 强激光与粒子束,2016,28(7):079001. doi: 10.11884/HPLPB201628.079001 FU Rongyao, SUN Yaohong, FAN Ailong, et al. Research of rock fracturing based on high voltage pulse in shale gas drilling[J]. High Power Laser and Particle Beams, 2016, 28(7): 079001. doi: 10.11884/HPLPB201628.079001
[26] 康忠健,王增宏,龚大建,等. 基于页岩频谱共振的储层改善装置研制[J]. 电气应用,2019,38(12):4–9. KANG Zhongjian, WANG Zenghong, GONG Dajian, et al. Development of reservoir improvement device based on shale spectrum resonance[J]. Electrotechnical Application, 2019, 38(12): 4–9.
[27] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2010: 3, 6-7. HAN Min, ZOU Xiaobing, ZHANG Guixin. Fundamentals of pulsed power technology[M]. Beijing: Tsinghua University Press, 2010: 3, 6-7.
[28] 周晓亭,秦勇,李恒乐,等. 电脉冲应力波作用下煤体微裂隙形成与发展过程[J]. 煤炭科学技术,2015,43(2):127–130. ZHOU Xiaoting, QIN Yong, LI Hengle, et al. Formation and development of coal micro-fractures under stress wave induced by electrical impulses[J]. Coal Science and Technology, 2015, 43(2): 127–130.
-
期刊类型引用(3)
1. 徐子鸿,王仪. 基于CNN-LSTM-Attention的气井井筒积液诊断. 成都工业学院学报. 2025(01): 14-20 . 百度学术
2. 张剑,肖禹涵,周忠易,杨俊龙. 基于TDCSO优化CNN-Bi-LSTM网络的井底钻压预测方法. 石油钻探技术. 2024(05): 82-90 . 本站查看
3. 陈现军,郭书生,廖高龙,董振国,付群超. 基于人工智能的录井岩屑荧光智能检测系统研制. 石油钻探技术. 2024(05): 130-137 . 本站查看
其他类型引用(0)