旋转射流冲蚀天然气水合物试验及数值模拟研究

张逸群, 胡萧, 武晓亚, 李根生, 田守嶒, 赵帅

张逸群, 胡萧, 武晓亚, 李根生, 田守嶒, 赵帅. 旋转射流冲蚀天然气水合物试验及数值模拟研究[J]. 石油钻探技术, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046
引用本文: 张逸群, 胡萧, 武晓亚, 李根生, 田守嶒, 赵帅. 旋转射流冲蚀天然气水合物试验及数值模拟研究[J]. 石油钻探技术, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046
ZHANG Yiqun, HU Xiao, WU Xiaoya, LI Gensheng, TIAN Shouceng, ZHAO Shuai. Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046
Citation: ZHANG Yiqun, HU Xiao, WU Xiaoya, LI Gensheng, TIAN Shouceng, ZHAO Shuai. Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046

旋转射流冲蚀天然气水合物试验及数值模拟研究

基金项目: 国家自然科学基金联合基金项目“南海天然气水合物成藏机理及安全高效开采机制”(编号:U20B6005)和国家自然科学基金面上项目“天然气水合物井底径向空化射流增产机理与调控方法研究”(编号:52174009)联合资助
详细信息
    作者简介:

    张逸群(1989—),男,江苏扬州人,2011年毕业于中国石油大学(北京)石油工程专业 ,2015年获英国赫瑞瓦特大学石油工程专业博士学位,副教授,主要从事新能源(天然气水合物、地热)钻完井新方法理论和技术、高压水射流理论和技术研究。E-mail:zhangyq@cup.edu.cn

  • 中图分类号: TE53

Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet

  • 摘要:

    为探究适合南海天然气水合物特点的高效开发模式,对比分析了淹没围压条件下锥形射流和旋转射流冲蚀天然气水合物沉积物的成孔规律。首先,利用 LS-DYNA软件,建立了旋转/锥形射流冲蚀天然气水合物沉积物的拉格朗日–欧拉(ALE)流固耦合模型,分析了淹没、围压条件对旋转/锥形射流冲蚀天然气水合物沉积物效率的影响;然后,利用自主设计研制的天然气水合物生成及射流冲蚀可视试验装置,进行了天然气水合物沉积物生成及冲蚀试验,天然气水合物二次生成后,在冲蚀坑中注石膏,测量冲蚀孔孔深及孔径。对比分析数值模拟和室内试验结果发现:围压在增强天然气水合物沉积物强度的同时,抑制了射流扩散能力,降低了射流冲蚀天然气水合物沉积物的效率;在无围压和围压5 MPa条件下,旋转射流冲蚀天然气水合物沉积物体积分别是锥形射流的1.8和1.7倍。研究结果表明,对于泥质粉砂储层天然气水合物沉积物,旋转射流在保证冲蚀孔孔深的同时,具有比锥形射流更强的扩孔能力,这为固态流化法开采天然气水合物提供了依据。

    Abstract:

    In order to explore an efficient development mode suitable for the characteristics of natural gas hydrate in the South China Sea, the hole forming law of submerged conical jet and swirling jet on natural gas hydrate sediments under confining pressures were compared and analyzed. Firstly, the Lagrangian-Eulerian (ALE) fluid-solid coupling model was established with LS-DYNA software to analyze the influence of submerged and confining pressure environment on the erosion efficiency of the two types of jets on natural gas hydrate sediments. The experiments for natural gas hydrate generation and jet erosion were carried out based on a self-designed visual experimental device. After the secondary generation of natural gas hydrate, gypsum was injected into the erosion hole to measure the depth and size of erosion hole. Through comparative analysis of numerical simulation and experimental results, it is concluded that the confining pressure can increase the strength of natural gas hydrate sediments while inhibiting the diffusion ability of jet, and can reduce the jet erosion efficiency. In the environments without confining pressure and with a confining pressure of 5 MPa, the volume of natural gas hydrate sediments eroded by swirling jet is 1.8 and 1.7 times that of conical jet, respectively. The results show that, for the natural gas hydrate deposits in argillaceous silt reservoirs, the swirling jet has a stronger hole-expanding ability than the conical jet while ensuring the depth of the erosion hole. This study provides a theoretical basis for the production of natural gas hydrate by solid fluidization method.

  • 图  1   旋转喷嘴的结构

    a. 喷嘴主体;b. 加旋叶轮;c. 锥形收缩段;d. 圆柱加速段

    Figure  1.   Swirling nozzle structure

    图  2   旋转射流冲蚀天然气水合物ALE模型

    Figure  2.   ALE model for natural gas hydrate erosion by swirling jet

    图  3   天然气水合物沉积物的应力–应变曲线

    Figure  3.   Stress-strain curve of natural gas hydrate sediment

    图  4   锥形射流流场速度云图

    Figure  4.   Velocity nephogram for the flow field of conical jet

    图  5   旋转射流流场速度云图

    Figure  5.   Velocity nephogram for the flow field of swirling jet

    图  6   旋转射流冲蚀水合物沉积物剖面

    Figure  6.   Profile of hydrate sediments eroded by swirling jet

    图  7   锥形射流冲蚀水合物沉积物剖面

    Figure  7.   Profile of hydrate sediments eroded by conical jet

    图  8   天然气水合物生成及射流冲蚀可视试验装置示意

    Figure  8.   Visual experimental device for natural gas hydrate generation and jet erosion

    图  9   试采地层固体颗粒的粒径分度

    Figure  9.   Particle size distribution of solid particles of the pre-production formation

    图  10   可视围压射流釜内的天然气水合物沉积物

    Figure  10.   The location of Natural gas hydrate sediment in the visible kettle for jet with confining pressure

    图  11   可视围压射流釜内压力和温度的变化

    Figure  11.   Variation of pressure and temperature in the visible kettle for jet with confining pressure

    图  12   冲蚀孔及注石膏结果

    Figure  12.   Results of erosion holes and gypsum injection

    图  13   淹没无围压条件下的旋转射流流场

    Figure  13.   Flow field of submerged swirling jet without confining pressure

    图  14   冲蚀体积与冲蚀时间的关系

    Figure  14.   Relationship between erosion volume and erosion time

    图  15   孔径随孔深变化的曲线

    Figure  15.   Variation of hole dimeter with depth

  • [1] 徐海良,孙思聪,杨放琼. 天然气水合物三相流段管道压力损失分析[J]. 断块油气田,2021,28(5):661–666.

    XU Hailiang, SUN Sicong, YANG Fangqiong. Analysis of pressure loss in three-phase flow segment of natural gas hydrate[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 661–666.

    [2] 牛洪波,于政廉,孙菁,等. 天然气水合物动力学抑制剂与水分子相互作用研究[J]. 石油钻探技术,2019,47(4):29–34. doi: 10.11911/syztjs.2019037

    NIU Hongbo, YU Zhenglian, SUN Jing, et al. The interaction between gas hydrate kinetics inhibitors and water molecules[J]. Petroleum Drilling Techniques, 2019, 47(4): 29–34. doi: 10.11911/syztjs.2019037

    [3] 谭富荣,耿庆明,刘世明,等. 天然气水合物含油气系统研究现状与展望[J]. 特种油气藏,2021,28(1):1–9.

    TAN Furong, GENG Qingming, LIU Shiming, et al. Research status and prospect of natural gas hydrate petroleum system[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 1–9.

    [4] 赵克斌,孙长青,吴传芝. 天然气水合物开发技术研究进展[J]. 石油钻采工艺,2021,43(1):7–14.

    ZHAO Kebin, SUN Changqing, WU Chuanzhi. 天然气水合物开发技术研究进展[J]. Oil Drilling & Production Technology, 2021, 43(1): 7–14.

    [5] 马永乐,张勇,刘晓栋,等. 海域天然气水合物低温抑制性钻井液体系[J]. 钻井液与完井液,2021,38(5):544–551.

    MA Yongle, ZHANG Yong, LIU Xiaodong, et al. A drilling fluid which inhibits formation of natural gas hydrate at low temperatures in offshore drilling[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 544–551.

    [6] 任红. 南海天然气水合物取样技术现状及发展建议[J]. 石油钻探技术,2020,48(4):89–93. doi: 10.11911/syztjs.2020045

    REN Hong. Current status and development recommendations for gas hydrate sampling technology in the South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(4): 89–93. doi: 10.11911/syztjs.2020045

    [7] 翟诚,孙可明. 天然气水合物降压分解诱发储层变形破坏正交数值模拟实验研究[J]. 特种油气藏,2022,29(1):99.

    ZHAI Cheng, SUN Keming. Experimental study with orthogonal numerical simulation on reservoir deformation and failure induced by depressurization and decomposition of natural gas hydrate[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 99.

    [8] 李文龙,高德利,杨进. 海域含天然气水合物地层钻完井面临的挑战及展望[J]. 石油钻采工艺,2019,41(6):681–689.

    LI Wenlong, GAO Deli, YANG Jin. Challenges and prospect of the drilling and completion technologies used for the natural gas hydrate reservoirs in sea areas[J]. Oil Drilling & Production Technology, 2019, 41(6): 681–689.

    [9] 李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi: 10.11911/syztjs.2020095

    LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi: 10.11911/syztjs.2020095

    [10] 光新军,王敏生. 海洋天然气水合物试采关键技术[J]. 石油钻探技术,2016,44(5):45–51. doi: 10.11911/syztjs.201605008

    GUANG Xinjun, WANG Minsheng. Key production test technologies for offshore natural gas hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45–51. doi: 10.11911/syztjs.201605008

    [11] 宋震,青显林,张运祥,等. 基于水平井射孔的天然气水合物降压抽采工艺[J]. 断块油气田,2020,27(6):719–724.

    SONG Zhen, QING Xianlin, ZHANG Yunxiang, et al. Depressurization extraction technology of natural gas hydrate based on horizontal well perforation[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 719–724.

    [12] 周守为,陈伟,李清平. 深水浅层天然气水合物固态流化绿色开采技术[J]. 中国海上油气,2014,26(5):1–7.

    ZHOU Shouwei, CHEN Wei, LI Qingping. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water[J]. China Offshore Oil and Gas, 2014, 26(5): 1–7.

    [13] 周守为,陈伟,李清平,等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气,2017,29(4):1–8.

    ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J]. China Offshore Oil and Gas, 2017, 29(4): 1–8.

    [14] 李根生,田守嶒,张逸群. 空化射流钻径向井开采天然气水合物关键技术研究进展[J]. 石油科学通报,2020,5(3):349–365. doi: 10.3969/j.issn.2096-1693.2020.03.030

    LI Gensheng, TIAN Shouceng, ZHANG Yiqun. Research progress on key technologies of natural gas hydrate exploitation by cavitation jet drilling of radial well[J]. Petroleum Science Bulletin, 2020, 5(3): 349–365. doi: 10.3969/j.issn.2096-1693.2020.03.030

    [15] 叶建良,秦绪文,谢文卫,等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质,2020,47(3):557–568. doi: 10.12029/gc20200301

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557–568. doi: 10.12029/gc20200301

    [16] 王国荣,钟林,周守为,等. 天然气水合物射流破碎工具及其配套工艺技术[J]. 天然气工业,2017,37(12):68–74. doi: 10.3787/j.issn.1000-0976.2017.12.010

    WANG Guorong, ZHONG Lin, ZHOU Shouwei, et al. Jet breaking tools for natural gas hydrate exploitation and their support technologies[J]. Natural Gas Industry, 2017, 37(12): 68–74. doi: 10.3787/j.issn.1000-0976.2017.12.010

    [17]

    TANG Yang, SUN Peng, WANG Guorong, et al. Rock-breaking mechanism and efficiency of straight-swirling mixed nozzle for the non-diagenetic natural gas hydrate in deep-sea shallow[J]. Energy Science and Engineering, 2020, 8(10): 3740–3752. doi: 10.1002/ese3.779

    [18] 潘栋彬,陈晨,杨林,等. 水射流破碎南海含水合物沉积物数值模拟研究[J]. 探矿工程(岩土钻掘工程),2018,45(10):27–31.

    PAN Dongbin, CHEN Chen, YANG Lin, et al. Physical simulation experiment system for jet erosion of natural gas hydrate[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2018, 45(10): 27–31.

    [19]

    CHEN Chen, PAN Dongbin, YANG Lin, et al. Investigation into the water jet erosion efficiency of hydrate-bearing sediments based on the Arbitrary Lagrangian-Eulerian Method[J]. Applied Sciences, 2019, 9(1): 182. doi: 10.3390/app9010182

    [20]

    ZHANG Yiqun, WU Xiaoya, HU Xiao, et al. Visualization and investigation of the erosion process for natural gashydrate using water jet through experiments and simulation[J]. Energy Reports, 2021, 8(11): 202–216.

    [21] 蒋斌,王艾伦,王计划. 基于ALE方法淹没条件下水射流破土数值模拟与试验[J]. 中国农机化学报,2020,41(8):196–203.

    JIANG Bin, WANG Ailun, WANG Jihua. Numerical simulation and experiment of breaking soil by jet under submerged condition based on ALE method[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(8): 196–203.

    [22] 张逸群,于超,程光明,等. 聚能筑巢堵漏用金属割缝管爆炸成形数值模拟及实验研究[J]. 石油钻探技术,2020,48(6):54–60. doi: 10.11911/syztjs.2020107

    ZHANG Yiqun, YU Chao, CHENG Guangming, et al. Experimental and numerical study of the explosive forming of slotted metal pipes for energy-gathered nesting plugging[J]. Petroleum Drilling Techniques, 2020, 48(6): 54–60. doi: 10.11911/syztjs.2020107

    [23]

    ZHANG Dongqing, LI Jingbin, HU Xiao, et al. Flow field simulation of swirling abrasive jet nozzle for hard rock breaking[J]. Geofluids, 2022: 4681189.

    [24] 刘晨辉, 汪淳. 基于开放边界条件的SPH法水射流数值模拟: 中国力学大会, 杭州, 2019-08-25–28[C].

    C]. LIU Chenhui, WANG Chun. Numerical simulation of water jet by SPH method based on open boundary condition: Chinese Mechanics Conference, Hangzhou, August 25–28, 2019[C].

    [25]

    JIANG Mingjing, HE Jie, WANG Jianfeng, et al. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness[J]. Comptes Rendus Mécanique, 2017, 345(12): 868–889.

    [26]

    LI Yanlong, LIU Changling, LIU Lele, et al. Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment[J]. Advances in Geo-Energy Research, 2018, 2(1): 43–52. doi: 10.26804/ager.2018.01.04

    [27]

    ZHANG Yiqun, ZHAO Kexian, WU Xiaoya, et al. An innovative experimental apparatus for the analysis of natural gas hydrate erosion process using cavitating jet[J]. The Review of Scientific Instruments, 2020, 91(9): 095107. doi: 10.1063/5.0011951

    [28]

    GHIASSIAN H, GROZIC J L H. Strength behavior of methane hydrate bearing sand in undrained triaxial testing[J]. Marine and Petroleum Geology, 2013, 43: 310–319. doi: 10.1016/j.marpetgeo.2013.01.007

  • 期刊类型引用(9)

    1. 罗攀登,张士诚,郭天魁,王赫,陈铭,张雄. 缝洞型碳酸盐岩水平井压裂裂缝沟通效果模拟. 深圳大学学报(理工版). 2025(01): 30-40 . 百度学术
    2. 罗志锋,程龙,谢耀增,刘举,张雄,罗攀登. 基于“扩缝串洞”理念的超深层小缝洞群碳酸盐岩储层改造数值模拟. 天然气工业. 2024(05): 80-95 . 百度学术
    3. 周舟,李犇,耿宇迪,肖锐. 超深破碎型地层岩石力学参数的大数据预测模型. 石油钻探技术. 2024(05): 91-96 . 本站查看
    4. 何成江,姜应兵,文欢,李翔. 塔河油田缝洞型油藏“一井多控”高效开发关键技术. 石油钻探技术. 2022(04): 37-44 . 本站查看
    5. 郭建春,苟波,秦楠,赵俊生,伍林,王坤杰,任冀川. 深层碳酸盐岩储层改造理念的革新——立体酸压技术. 天然气工业. 2020(02): 61-74 . 百度学术
    6. 李春月,房好青,牟建业,黄燕飞,胡文庭. 碳酸盐岩储层缝内暂堵转向压裂实验研究. 石油钻探技术. 2020(02): 88-92 . 本站查看
    7. 韩福勇,倪攀,孟海龙. 宽带暂堵转向多缝压裂技术在苏里格气田的应用. 钻井液与完井液. 2020(02): 257-263 . 百度学术
    8. 李新勇,耿宇迪,刘志远,汪文智,周舟. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究. 石油钻探技术. 2020(06): 88-93 . 本站查看
    9. 王涛,赵兵,曲占庆,郭天魁,罗攀登,王晓之. 塔河老区井周弱势通道暂堵酸压技术. 断块油气田. 2019(06): 794-799 . 百度学术

    其他类型引用(1)

图(15)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  211
  • PDF下载量:  51
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-11-06
  • 修回日期:  2022-03-27
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回